首页 | 本学科首页   官方微博 | 高级检索  
     


Differential expression of a phosphoepitope at the kinetochores of moving chromosomes
Abstract:
A phosphorylated epitope is differentially expressed at the kinetochores of chromosomes in mitotic cells and may be involved in regulating chromosome movement and cell cycle progression. During prophase and early prometaphase, the phosphoepitope is expressed equally among all the kinetochores. In mid-prometaphase, some chromosomes show strong labeling on both kinetochores; others exhibit weak or no labeling; while in other chromosomes, one kinetochore is intensely labeled while its sister kinetochore is unlabeled. Chromosomes moving toward the metaphase plate express the phosphoepitope strongly on the leading kinetochore but weakly on the trailing kinetochore. This is the first demonstration of a biochemical difference between the two kinetochores of a single chromosome. During metaphase and anaphase, the kinetochores are unlabeled. At metaphase, a single misaligned chromosome can inhibit further progression into anaphase. Misaligned chromosomes express the phosphoepitope strongly on both kinetochores, even when all the other chromosomes of a cell are assembled at the metaphase plate and lack expression. This phosphoepitope may be involved in regulating chromosome movement to the metaphase plate during prometaphase and may be part of a cell cycle checkpoint by which the onset of anaphase is inhibited until complete metaphase alignment is achieved.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号