Coronavirus multiplication: locations of genes for virion proteins on the avian infectious bronchitis virus genome. |
| |
Authors: | D F Stern and B M Sefton |
| |
Abstract: | Six overlapping viral RNAs are synthesized in cells infected with the avian coronavirus infectious bronchitis virus (IBV). These RNAs contain a 3'-coterminal nested sequence set and were assumed to be viral mRNAs. The seven major IBV virion proteins are all produced by processing of three polypeptides of ca. 23, 51, and 115 kilodaltons. These are the core polypeptides of the small membrane proteins, the nucleocapsid protein, and the 155-kilodalton precursor to the large membrane proteins GP90 and GP84, respectively. To determine which mRNAs specify these polypeptides, we isolated RNA from infected cells and translated it in a messenger-dependent rabbit reticulocyte lysate. Proteins of 23, 51, and 110 kilodaltons were produced. Two-dimensional tryptic peptide mapping demonstrated that these proteins were closely related to the major virion proteins. Fractionation of the RNA before cell-free translation permitted the correlation of messenger activities for synthesis of the proteins with the presence of specific mRNAs. We found that the smallest RNA, RNA A, directs the synthesis of P51, the nucleocapsid protein. RNA C, which contains the sequences of RNA A, directs the synthesis of the small membrane protein P23. RNA E directs the synthesis of the large virion glycoproteins. These results supported a model in which only the unique 5'-terminal domain of each IBV mRNA is active in translation and enabled us to localize genes for virion proteins on the IBV genome. |
| |
Keywords: | |
|
|