首页 | 官方网站   微博 | 高级检索  
     


Cellular transformation by subgenomic feline sarcoma virus DNA
Authors:M Barbacid
Abstract:The genome of the Snyder-Theilen strain of feline sarcoma virus (ST-FeSV) is a 4.3-kilobase-pair (kbp) RNA molecule that contains a 1.5-kbp cellular insertion (fes gene) flanked by feline leukemia virus sequences at its 5' end (1.6 kbp) and 3' end (1.2 kbp) (Sherr et al., J. Virol. 34:200-212, 1980). DNA transfection techniques have been utilized to determine the regions of the ST-FeSV genome involved in malignant transformation. I have found that the 3.7-kbp 5'-end fragment of the ST-FeSV provirus (which corresponds to the 3.4-kbp 5'-end fragment of the viral genome) is sufficient to transform NIH/3T3 fibroblasts. Enzymes that cleave the ST-FeSV provirus DNA within the feline leukemia virus gag gene sequences or within the fes gene abolished the transforming activity. Preservation of the proviral large terminal repeats was also required for transformation. Transformed NIH/3T3 cells obtained by transfection of total or subgenomic ST-FeSV DNA expressed normal levels of the ST-FeSV gene product ST P85 and of its associated protein kinase activity. Furthermore, these cells contained high levels of phosphotyrosine residues, a biochemical marker associated with cellular transformation induced by certain retroviruses including ST-FeSV. These results, taken together, strongly support the concept that only those ST-FeSV proviral sequences necessary for ST P85 expression are involved in malignant transformation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号