首页 | 官方网站   微博 | 高级检索  
     


Hydrogen Sulphide modulating mitochondrial morphology to promote mitophagy in endothelial cells under high‐glucose and high‐palmitate
Authors:Ning Liu  Jichao Wu  Linxue Zhang  Zhaopeng Gao  Yu Sun  Miao Yu  Yajun Zhao  Shiyun Dong  Fanghao Lu  Weihua Zhang
Affiliation:1. Department of Pathophysiology, Harbin Medical University, Harbin, China;2. Bio‐Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin, China
Abstract:Endothelial cell dysfunction is one of the main reasons for type II diabetes vascular complications. Hydrogen sulphide (H2S) has antioxidative effect, but its regulation on mitochondrial dynamics and mitophagy in aortic endothelial cells under hyperglycaemia and hyperlipidaemia is unclear. Rat aortic endothelial cells (RAECs) were treated with 40 mM glucose and 200 μM palmitate to imitate endothelium under hyperglycaemia and hyperlipidaemia, and 100 μM NaHS was used as an exogenous H2S donor. Firstly, we demonstrated that high glucose and palmitate decreased H2S production and CSE expression in RAECs. Then, the antioxidative effect of H2S was proved in RAECs under high glucose and palmitate to reduce mitochondrial ROS level. We also showed that exogenous H2S inhibited mitochondrial apoptosis in RAECs under high glucose and palmitate. Using Mito Tracker and transmission electron microscopy assay, we revealed that exogenous H2S decreased mitochondrial fragments and significantly reduced the expression of p‐Drp‐1/Drp‐1 and Fis1 compared to high‐glucose and high‐palmitate group, whereas it increased mitophagy by transmission electron microscopy assay. We demonstrated that exogenous H2S facilitated Parkin recruited by PINK1 by immunoprecipitation and immunostaining assays and then ubiquitylated mitofusin 2 (Mfn2), which illuminated the mechanism of exogenous H2S on mitophagy. Parkin siRNA suppressed the expression of Mfn2, Nix and LC3B, which revealed that it eliminated mitophagy. In summary, exogenous H2S could protect RAECs against apoptosis under high glucose and palmitate by suppressing oxidative stress, decreasing mitochondrial fragments and promoting mitophagy. Based on these results, we proposed a new mechanism of H2S on protecting endothelium, which might provide a new strategy for type II diabetes vascular complication.
Keywords:diabetes  Parkin  hydrogen sulphide  mitophagy  mitochondrial fission/fusion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号