首页 | 官方网站   微博 | 高级检索  
     


Respiration of thermogenic inflorescences of skunk cabbage Symplocarpus renifolius in heliox
Authors:Roger S Seymour  Kikukatsu Ito  Yui Umekawa
Affiliation:1. School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia;2. Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
Abstract:The respiration rate of the thermogenic inflorescences of Japanese skunk cabbage Symplocarpus renifolius can reach 300 nmol s?1 g?1, which is sufficient to raise spadix temperature (Ts) up to 15 ° C above ambient air temperature (Ta). Respiration rate is inversely related to Ta, such that the Ts achieves a degree of independence from Ta, an effect known as temperature regulation. Here, we measure oxygen consumption rate (?o 2) in air (21% O2 in mainly N2) and in heliox (21% O2 in He) to investigate the diffusive conductance of the network of gas‐filled spaces and the thermoregulatory response. When Ts was clamped at 15 ° C, the temperature that produces maximal ?o 2 in this species, exposure to high diffusivity heliox increased mean ?o 2 significantly from 137 ± 17 to 202 ± 43 nmol s?1 g?1 FW, indicating that respiration in air is normally limited by diffusion in the gas phase and some mitochondria are unsaturated. When Ta was clamped at 15 ° C and Ts was allowed to vary, exposure to heliox reduced Ts 1 ° C and increased ?o 2 significantly from 116 ± 10 to 137 ± 19 nmol s?1 g?1, indicating that enhanced heat loss by conduction and convection can elicit the thermoregulatory response.
Keywords:diffusion  flower  gas conductance  heliox  inflorescence  oxygen consumption  respiration  thermogenesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号