首页 | 官方网站   微博 | 高级检索  
     


Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan
Authors:Wright Wayne W  Guffanti Gregory T  Vanderkooi Jane M
Affiliation:Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104, USA.
Abstract:Sugars are known to stabilize proteins. This study addresses questions of the nature of sugar and proteins incorporated in solid sugar films. Infrared (IR) and Raman spectroscopy was used to examine trehalose and sucrose films and glycerol/water solvent. Proteins and indole-containing compounds that are imbedded in the sugar films were studied by IR and optical (absorption, fluorescence, and phosphorescence) spectroscopy. Water is able to move in the sugar films in the temperature range of 20-300 K as suggested by IR absorption bands of HOH bending and OH stretching modes that shift continuously with temperature. In glycerol/water these bands reflect the glass transition at approximately 160 K. The fluorescence of N-acetyl-L-tryptophanamide and tryptophan of melittin, Ca-free parvalbumin, and staphylococcal nuclease in dry trehalose/sucrose films remains broad and red-shifted over a temperature excursion of 20-300 K. In contrast, the fluorescence of these compounds in glycerol/water solvent shift to the blue as temperature decreases. The fluorescence of the buried tryptophan in Ca-bound parvalbumin in either sugar film or glycerol/water remains blue-shifted and has vibronic resolution over the entire temperature range. The red shift for fluorescence of indole groups exposed to solvent in the sugars is consistent with the motion of water molecules around the excited-state molecule that occurs even at low temperature, although the possibility of static complex formation between the excited-state molecule and water or other factors is discussed. The phosphorescence yield for protein and model indole compounds is sensitive to the matrix glass transition. Phosphorescence emission spectra are resolved and shift little in different solvents or temperature, as predicted by the small dipole moment of the excited triplet state molecule. The conclusion is that the sugar film maintains the environment present at the glass formation temperature for surface Trp and amide groups over a wide temperature excursion. In glycerol/water these groups reflect local changes in the environment as temperature changes.
Keywords:NATA  l-tryptophanamide" target="_blank">N-acetyl-l-tryptophanamide  TS  trehalose/sucrose  AG  N-acetylglycine
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号