首页 | 官方网站   微博 | 高级检索  
     


Cd2+ regulation of the hyperpolarization-activated current IAB in crayfish muscle
Abstract:The effects of Cd2+ on the hyperpolarization-activated K(+)-mediated current called IAB (Araque, A., and W. Buno. 1994. Journal of Neuroscience. 14:399-408.) were studied under two-electrode voltage- clamp in opener muscle fibers of the crayfish Procambarus clarkii. IAB was reversibly reduced by extracellular Cd2+ in a concentration- dependent manner, obeying the Hill equation with IC50 = 0.452 +/- 0.045 mM and a Hill coefficient of 1 (determined from the maximal chord conductance of IAB). Cd2+ decreased the IAB conductance (GAB) and shifted its voltage dependence towards hyperpolarized potentials in a similar degree, without affecting the slope of the voltage dependence. The IAB activation time constant increased, whereas the IAB deactivation time constant was not modified by Cd2+. The IAB equilibrium potential (EAB) was unmodified by Cd2+, indicating that the selective permeability of IAB channels was not altered. IAB was unaffected by intracellular Cd2+. The Cd(2+)-regulation of IAB did not depend on K+]o, and the effects of K+]o on IAB were unchanged by Cd2+, indicating that Cd2+ did not compete with K+. Therefore, Cd2+ probably bound to a different site to that involved in the K+ permeability pathway. We conclude that Cd2+ affected the gating of IAB channels, interfering with their opening but not with their closing mechanism. The results can be explained by a kinetic model in which the binding of Cd2+ to the IAB channels would stabilize the gating apparatus at its resting position, increasing the energy barrier for the transition from the closed to the open channel states.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号