首页 | 官方网站   微博 | 高级检索  
     


Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips.
Authors:J W Kijne  G Smit  C L Díaz  and B J Lugtenberg
Affiliation:Department of Plant Molecular Biology, Leiden University, The Netherlands.
Abstract:The ability of Rhizobium leguminosarum 248 to attach to developing Pisum sativum root hairs was investigated during various phases of bacterial growth in yeast extract-mannitol medium. Direct cell counting revealed that growth of the rhizobia transiently stopped three successive times during batch culture in yeast extract-mannitol medium. These interruptions of growth, as well as the simultaneous autoagglutination of the bacteria, appeared to be caused by manganese limitation. Rhizobia harvested during the transient phases of growth inhibition appeared to have a better attachment ability than did exponentially growing rhizobia. The attachment characteristics of these manganese-limited rhizobia were compared with those of carbon-limited rhizobia (G. Smit, J. W. Kijne, and B. J. J. Lugtenberg, J. Bacteriol. 168:821-827, 1986, and J. Bacteriol. 169:4294-4301, 1987). In contrast to the attachment of carbon-limited cells, accumulation of manganese-limited rhizobia (cap formation) was already in full progress after 10 min of incubation; significantly delayed by 3-O-methyl-D-glucose, a pea lectin haptenic monosaccharide; partially resistant to sodium chloride; and partially resistant to pretreatment of the bacteria with cellulase. Binding of single bacteria to the root hair tips was not inhibited by 3-O-methyl-D-glucose. Whereas attachment of single R. leguminosarum cells to the surface of pea root hair tips seemed to be similar for both carbon- and manganese-limited cells, the subsequent accumulation of manganese-limited rhizobia at the root hair tips is apparently accelerated by pea lectin molecules. Moreover, spot inoculation tests with rhizobia grown under various culture conditions indicated that differences in attachment between manganese- and carbon-limited R. leguminosarum cells are correlated with a significant difference in infectivity in that manganese-limited rhizobia, in contrast to carbon-limited rhizobia, are infective. This growth-medium-dependent behavior offers and explanation for the seemingly conflicting data on the involvement of host plant lectins in attachment of rhizobia to root hairs of leguminous plants. Sym plasmid-borne genes do not play a role in manganese-limitation-induced attachment of R. leguminosarum.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号