Abstract: | We summarize the predictions of the exciton model that was originally proposed to explain the observed biphasic band shape of its CD spectrum in the visible region of bacteriorhodopsin (bR). It is shown that to reconcile these predictions with the observed results on the linear dichroism, the retinal isomerization time and, the retinal-retinal distance, the biphasic nature of the observed CD spectrum of bR becomes itself an evidence against the exciton model because of the uncertainty principle. Reduced bR (RbR), which retains its hexagonal structure, shows a monophasic CD spectrum with relatively small rotational strength as compared to bR. This is shown to disagree with predictions made by the exciton model. The results could best be explained in terms of retinal-protein heterogeneity leading to two or more types of bR in which their retinals suffer opposite sense of intramolecular rotational distortion along their retinal long axis. Such a retinal-protein heterogeneity disappears in reduced bR which is known to have a planar (nondistorted) retinal conjugated system, resulting in a monophasic CD with reduced rotational strength, as observed. |