首页 | 官方网站   微博 | 高级检索  
     


Nitrogen nutrition and metabolic interconversions of nitrogenous solutes in developing cowpea fruits
Authors:Peoples M B  Atkins C A  Pate J S  Murray D R
Affiliation:Department of Botany, University of Western Australia, Nedlands, WA 6009, Australia.
Abstract:Budgets for import and utilization of ureide, amides, and a range of amino acids were constructed for the developing first-formed fruit of symbiotically dependent cowpea (Vigna unguiculata L.] Walp. cv Vita 3). Data on fruit total N economy, and analyses of the xylem and phloem streams serving the fruit, were used to predict the input of various solutes while the compositions of the soluble and protein pools of pod, seed coat, and embryo were used to estimate the net consumption of compounds. Ureides and amides provided virtually all of the fruit's N requirements for net synthesis of amino compounds supplied inadequately from the parent plant. Xylem was the principal source of ureide to the pod, while phloem was the major source of amides to pod and seed. All fruit parts showed in vitro activity of urease (EC 3.5.1.5), allantoinase (EC 3.5.2.5), asparaginase (EC 3.5.11), ammonia-assimilating enzymes and aspartate and alanine aminotransferases (EC 2.61.1 and EC 2.6.1.1.2). Asparagine:pyruvate aminotransferase (EC 2.6.1.14) was recovered only from the pod. The pod was initially the major site for processing and incorporating N; later seed coats and finally embryos became predominant. Ureides were broken down mainly in the pod and seed coat. Amide metabolism occurred in all fruit organs, but principally in the embryo during much of seed growth. Seed coats released N to embryos mainly as histidine, arginine, glutamine, and asparagine, hardly at all as ureide. Amino compounds delivered in noticeably deficient amounts to the fruit were arginine, histidine, glycine, glutamate, and aspartate, while seeds received insufficient arginine, histidine, serine, glycine, and alanine. Quantitatively based schemes are proposed depicting the principal metabolic transformation accompanying N-flow between seed compartments during development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号