Abstract: | Of the more than 30 genes required for flagellar function, 6 are located between pyrC and ptsG on the Escherichia coli genetic man. This cluster of genes is called flagellar region I. Four-point transductional crosses were used to establish the position and order of the region I flagellar genes with respect to the outside markers ptsG and pyrC. Bacteriophage lambda-E. coli hybrids that contained most of the genes necessary for flagellar formation were constructed. The properties of specific hybrids that carried the region I fla genes were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the lambda hybrids demonstrated the existence of at least six flagellar-specific cistrons. These directed the synthesis of polypeptides with the following apparent molecular weights: flaV, 11,000; flaK, 42,000; flaL, 30,000 and 27,000; flaM, 38,000; flS, 60,000; and flaT, 35,000. Plasmid ColE1-E. coli hybrids with region I flagellar genes were also used to program the synthesis of polypeptides in minicell-producing strains. The polypeptides synthesized in these experiments were identical to polypeptides of the hook-basal body structure and helped to confirm the assignment of genes to specific polypeptides. The synthesis of all of these polypeptides was regulated by the same mechanism that regulates the synthesis of other flagellar-related structural components. |