首页 | 官方网站   微博 | 高级检索  
     


Automated protein fold determination using a minimal NMR constraint strategy
Authors:Zheng Deyou  Huang Yuanpeng J  Moseley Hunter N B  Xiao Rong  Aramini James  Swapna G V T  Montelione Gaetano T
Affiliation:Center for Advanced Biotechnology and Medicine (CABM), Northeast Structural Genomics Consortium, and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
Abstract:Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, (13)C-, (15)N-enriched protein samples with selective protonation of side-chain methyl groups ((13)CH(3)). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain (15)N, H(N) resonances, and side-chain (13)CH(3) methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide (1)H/(2)H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A.
Keywords:Automated NMR data analysis  deuteration  minimal NMR constraints  selective labeling  structural genomics  AP  antiphase  IP  in‐phase  IPAP  in‐phase/antiphase  RMSD  root‐mean‐square deviation  RDC  residual dipolar coupling  STAC  Spin System Type Assignment Constraints  STACi  intraresidue STAC constraint  STACs  sequential STAC constraint
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号