首页 | 官方网站   微博 | 高级检索  
     


Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses
Authors:FRANÇOIS CHAUMONT  QING YE
Affiliation:1. Institut des Sciences de la Vie, Université catholique de Louvain, Louvain‐la‐Neuve, Belgium;2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
Abstract:It has long been recognized that inhibition of plant water transport by either osmotic stress or salinity is mediated by aquaporins (AQPs), but the function and regulation of AQPs are highly variable among distinct isoforms and across different species. In this study, cucumber seedlings were subjected to polyethylene glycol (PEG) or NaCl stress for duration of 2 h or 24 h. The 2 h treatment with PEG or NaCl had non‐significant effect on the expression of plasma membrane AQP (CsPIPs) in roots, indicating the decrease in hydraulic conductivity of roots (Lpr) and root cells (Lprc) measured in these conditions were due to changes in AQP activity. After both 2 h and 24 h PEG or NaCl exposure, the decrease in hydraulic conductivity of leaves (Kleaf) and leaf cells (Lplc) could be attributed to a down‐regulation of the two most highly expressed isoforms, CsPIP1;2 and CsPIP2;4. In roots, both Lpr and Lprc were further reduced after 24 h PEG exposure, but partially recovered after 24 h NaCl treatment, which were consistent with changes in the expression of CsPIP genes. Overall, the results demonstrated differential responses of CsPIPs in mediating water transport of cucumber seedlings, and the regulatory mechanisms differed according to applied stresses, stress durations and specific organs.
Keywords:hydraulic conductivity  plasma membrane intrinsic protein  pressure probe  salinity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号