首页 | 官方网站   微博 | 高级检索  
     


The human immunodeficiency virus type 1 Rev protein and the Rev-responsive element counteract the effect of an inhibitory 5' splice site in a 3' untranslated region.
Authors:S K Barksdale and  C C Baker
Abstract:A 5' splice site located in a 3' untranslated region (3'UTR) has been shown previously to inhibit gene expression. Natural examples of inhibitory 5' splice sites have been identified in the late 3'UTRs of papillomaviruses and are thought to inhibit viral late gene expression at early stages of the viral life cycle. In this study, we demonstrate that the interaction of the human immunodeficiency virus type 1 Rev protein with the Rev-responsive element (RRE) overcomes the inhibitory effects of a 5' splice site located within a 3'UTR. This was studied by using both a bovine papillomavirus type 1 L1 cDNA expression vector and a chloramphenicol acetyltransferase expression vector containing a 5' splice site in the 3'UTR. In both systems, coexpression of Rev enhanced cytoplasmic expression from vectors containing the RRE even when the RRE and the inhibitory 5' splice site were separated by up to 1,000 nucleotides. In addition, multiple copies of a 5' splice site in a 3'UTR were shown to act synergistically, and this effect could also be moderated by the interaction of Rev and the RRE. These studies provide additional evidence that at least one mechanism of Rev action is through interactions with the splicing machinery. We have previously shown that base pairing between the U1 small nuclear RNA and a 3'UTR 5' splice site is required for inhibition of gene expression. However, experiments by J. Kjems and P. A. Sharp (J. Virol. 67:4769-4776, 1993) have suggested that Rev acts on spliceosome assembly at a stage after binding of the U1 small nuclear ribonucleoprotein to the 5' splice site. This finding suggests that binding of additional small nuclear ribonucleoproteins, as well as other splicing factors, may be necessary for the inhibitory action of a 3'UTR 5' splice site. These data also suggest that expression of the papillomavirus late genes in terminally differentiated keratinocytes can be regulated by a viral or cellular Rev-like activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号