首页 | 官方网站   微博 | 高级检索  
     


Ion Transport Nanotube Assembled with Vertically Aligned Metallic MoS2 for High Rate Lithium‐Ion Batteries
Authors:Yucong Jiao  Alolika Mukhopadhyay  Yi Ma  Lei Yang  Ahmed M Hafez  Hongli Zhu
Affiliation:Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
Abstract:Metallic phase molybdenum disulfide (MoS2) is well known for orders of magnitude higher conductivity than 2H semiconducting phase MoS2. Herein, for the first time, the authors design and fabricate a novel porous nanotube assembled with vertically aligned metallic MoS2 nanosheets by using the scalable solvothermal method. This metallic nanotube has the following advantages: (i) intrinsic high electrical conductivity that promotes the rate performance of battery and eliminates the using of conductive additive; (ii) hierarchical, hollow, porous, and aligned structure that assists the electrolyte transportation and diffusion; (iii) tubular structure that avoids restacking of 2D nanosheets, and therefore maintains the electrochemistry cycling stability; and (iv) a shortened ion diffusion path, that improves the rate performance. This 1D metallic MoS2 nanotube is demonstrated to be a promising anode material for lithium‐ion batteries. The unique structure delivers an excellent reversible capacity of 1100 mA h g?1 under a current density of 5 A g?1 after 350 cycles, and an outstanding rate performance of 589 mA h g?1 at a current density of 20 A g?1. Furthermore, attributed to the material's metallic properties, the electrode comprising 100% pure material without any additive provides an ideal system for the fundamental electrochemical study of metallic MoS2. This study first reveals the characteristic anodic peak at 1.5 V in cyclic voltammetry of metallic MoS2. This research sheds light on the fabrication of metallic 1D, 2D, or even 3D structures with 2D nanosheets as building blocks for various applications.
Keywords:intrinsic conductivity  lithium‐ion anodes  metallic MoS2  nanotubes  rate performance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号