Role of a single aquaporin isoform in root water uptake |
| |
Authors: | Javot Hélène Lauvergeat Virginie Santoni Véronique Martin-Laurent Fabrice Güçlü Josette Vinh Joëlle Heyes Julian Franck Katja I Schäffner Anton R Bouchez David Maurel Christophe |
| |
Affiliation: | Biochimie et Physiologie Moléculaire des Plantes, Agro-M/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/UM2 Unité Mixte de Recherche 5004, Place Viala, F-34060 Montpellier Cedex 1, France. |
| |
Abstract: | Aquaporins are ubiquitous channel proteins that facilitate the transport of water across cell membranes. Aquaporins show a typically high isoform multiplicity in plants, with 35 homologs in Arabidopsis. The integrated function of plant aquaporins and the function of each individual isoform remain poorly understood. Matrix-assisted laser desorption/ionization time-of-flight analyses suggested that Plasma Membrane Intrinsic Protein2;2 (PIP2;2) is one of the abundantly expressed aquaporin isoforms in Arabidopsis root plasma membranes. Two independent Arabidopsis knockout mutants of PIP2;2 were isolated using a PCR-based strategy from a library of plant lines mutagenized by the insertion of Agrobacterium tumefaciens T-DNA. Expression in transgenic Arabidopsis of a PIP2;2 promoter-beta-glucuronidase gene fusion indicated that PIP2;2 is expressed predominantly in roots, with a strong expression in the cortex, endodermis, and stele. The hydraulic conductivity of root cortex cells, as measured with a cell pressure probe, was reduced by 25 to 30% in the two allelic PIP2;2 mutants compared with the wild type. In addition, free exudation measurements revealed a 14% decrease, with respect to wild-type values, in the osmotic hydraulic conductivity of roots excised from the two PIP2;2 mutants. Together, our data provide evidence for the contribution of a single aquaporin gene to root water uptake and identify PIP2;2 as an aquaporin specialized in osmotic fluid transport. PIP2;2 has a close homolog, PIP2;3, showing 96.8% amino acid identity. The phenotype of PIP2;2 mutants demonstrates that, despite their high homology and isoform multiplicity, plant aquaporins have evolved with nonredundant functions. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|