首页 | 官方网站   微博 | 高级检索  
     


Purification and Characterization of Pea Epicotyl beta-Amylase
Authors:Lizotte P A  Henson C A  Duke S H
Affiliation:Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706-1597.
Abstract:The most abundant β-amylase (EC 3.2.1.2) in pea (Pisum sativum L.) was purified greater than 880-fold from epicotyls of etiolated germinating seedlings by anion exchange and gel filtration chromatography, glycogen precipitation, and preparative electrophoresis. The electrophoretic mobility and relative abundance of this β-amylase are the same as that of an exoamylase previously reported to be primarily vacuolar. The enzyme was determined to be a β-amylase by end product analysis and by its inability to hydrolyze β-limit dextrin and to release dye from starch azure. Pea β-amylase is an approximate 55 to 57 kilodalton monomer with a pl of 4.35, a pH optimum of 6.0 (soluble starch substrate), an Arrhenius energy of activation of 6.28 kilocalories per mole, and a Km of 1.67 milligrams per milliliter (soluble starch). The enzyme is strongly inhibited by heavy metals, p-chloromer-curiphenylsulfonic acid and N-ethylmaleimide, but much less strongly by iodoacetamide and iodoacetic acid, indicating cysteinyl sulfhydryls are not directly involved in catalysis. Pea β-amylase is competitively inhibited by its end product, maltose, with a Ki of 11.5 millimolar. The enzyme is partially inhibited by Schardinger maltodextrins, with α-cyclohexaamylose being a stronger inhibitor than β-cycloheptaamylose. Moderately branched glucans (e.g. amylopectin) were better substrates for pea β-amylase than less branched or non-branched (amyloses) or highly branched (glycogens) glucans. The enzyme failed to hydrolyze native starch grains from pea and glucans smaller than maltotetraose. The mechanism of pea β-amylase is the multichain type. Possible roles of pea β-amylase in cellular glucan metabolism are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号