首页 | 官方网站   微博 | 高级检索  
     


Calcium and proton transport in membrane vesicles from barley roots
Authors:Dupont F M  Bush D S  Windle J J  Jones R L
Affiliation:U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, California 94710.
Abstract:Ca2+ uptake by membrane fractions from barley (Hordeum vulgare L. cv CM72) roots was characterized. Uptake of 45Ca2+ was measured in membrane vesicles obtained from continuous and discontinuous sucrose gradients. A single, large peak of Ca2+ uptake coincided with the peak of proton transport by the tonoplast H+-ATPase. Depending on the concentration of Ca2+ in the assay, Ca2+ uptake was inhibited 50 to 75% by those combinations of ionophores and solutes that eliminated the pH gradient and membrane potential. However, 25 to 50% of the Ca2+ uptake in the tonoplast-enriched fraction was not sensitive to ionophores but was inhibited by vanadate. The results suggest that 45Ca uptake was driven by the low affinity, high capacity tonoplast Ca2+/nH+ antiporter and also by a high affinity, lower capacity Ca2+-ATPase. The Ca2+-ATPase may be associated with tonoplast, Golgi or contaminating vesicles of unknown origin. No Ca2+ transport was specifically associated with the distinct peak of endoplasmic reticulum that was identified by NADH cytochrome c reductase, choline phosphotransferase, and dolichol-P-man-nosyl synthase activities. A small shoulder of Ca2+ uptake in the plasma membrane region of the gradient was inhibited by vanadate and erythrosin B and may represent the activity of a separate plasma membrane Ca2+-ATPase. Vesicle volumes were estimated using electron spin resonance techniques, and intravesicular Ca2+ concentrations were estimated to be as high as 5 millimolar. ATP-driven uptake of Ca2+ created 800- to 2000-fold concentration gradients within minutes. Problems in interpreting the effects of Ca2+ on ATP-generated pH gradients are discussed and the suggestion is made that Ca2+ dissipates pH gradients by a different mechanism than is responsible for Ca2+ uptake into tonoplast vesicles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号