首页 | 官方网站   微博 | 高级检索  
     


Amino Acid transport and metabolism in relation to the nitrogen economy of a legume leaf
Authors:Atkins C A  Pate J S  Peoples M B  Joy K W
Affiliation:Department of Botany, University of Western Australia, Nedlands, W. A. 6009, Australia.
Abstract:Net balances of amino acids were constructed for stages of development of a leaf of white lupin (Lupinus albus L.) using data on the N economy of the leaf, its exchanges of amino acids through xylem and phloem, and net changes in its soluble and protein-bound amino acids. Asparagine, aspartate, and γ-aminobutyrate were delivered to the leaf in excess of amounts consumed in growth and/or phloem export. Glutamine was supplied in excess until full leaf expansion (20 days) but was later synthesized in large amounts in association with mobilization of N from the leaf. Net requirements for glutamate, threonine, serine, proline, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine were met mainly or entirely by synthesis within the leaf. Amides furnished the bulk of the N for amino acid synthesis, asparagine providing from 24 to 68%. In vitro activity of asparaginase (EC 3.5.1.1) exceeded that of asparagine:pyruvate aminotransferase (EC 2.6.1.14) during early leaf expansion, when in vivo estimates of asparagine metabolism were highest. Thereafter, aminotransferase activity greatly exceeded that of asparaginase. Rates of activity of one or both asparagine-utilizing enzymes exceeded estimated rates of asparagine catabolism throughout leaf development. In vitro activities of glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.7.1) were consistently much higher than that of glutamate dehydrogenase (EC 1.4.1.3), and activities of the former two enzymes more than accounted for estimated rates of ammonia release in photorespiration and deamidation of asparagine.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号