首页 | 官方网站   微博 | 高级检索  
     


Seasonal Variations in Rubber Biosynthesis, 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase,and Rubber Transferase Activities in Parthenium argentatum in the Chihuahuan Desert
Authors:Ji W  Benedict C R  Foster M A
Affiliation:Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.
Abstract:The rubber content and the activities of enzymes in the polyisoprenoid pathway in Parthenium argentatum (guayule) were examined throughout the growing season in field plots in the Chihuahuan Desert. The rubber content of the plants was low in July and August and slowly increased until October. From October to December there was a rapid increase in rubber formation (per plant) from 589.0 mg to 4438.0 mg. The percentage of rubber in the plants increased from 0.7% (mg/g dry weight) in August and 1.27% in October to 5.5% in December. The rapid increase in rubber formation may result from exposing the plants to low temperatures of 5 to 7deg]C. The activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) was 21.1 nmol mevalonic acid (MVA) h-1 g-1 fresh weight in the bark of the lower stems in June during seedling growth and decreased to 5.1 nmol MVA h-1g-1 fresh weight in July and 2.9 nmol MVA h-1 g-1 fresh weight in September. From October to December, the activity increased from 5.0 to 29.9 nmol MVA h-1 g-1 fresh weight. The activity of rubber transferase was 65.5 nmol isopentenyl pyrophosphate (IPP) h-1 g-1fresh weight in the bark in September and increased to 357.5 nmol IPP h-1 g-1 fresh weight in December. The rapid increase in the activities of HMGR and rubber transferase coincided with the rapid increase in rubber formation. The activities of MVA kinase and IPP isomerase did not significantly increase in the fall and winter. A tomato HMGR-1 cDNA probe containing a highly conserved C-terminal region of HMGR genes hybridized at low stringency with several bands on blots of HindIII-digested genomic DNA from guayule. In northern blots with the HMGR-1 cDNA probe at low stringency, HMGR mRNA was high in June and November, corresponding to periods of high HMGR activity during seedling growth and rapid increase in rubber formation. The seasonal variations in rubber formation and HMGR mRNA, HMGR activity, and rubber transferase activity may be due to low temperature stimulation in the fall and winter months.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号