首页 | 官方网站   微博 | 高级检索  
     


Corticosterone primes the neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness
Authors:James P O'Callaghan  Kimberly A Kelly  Alicia R Locker  Diane B Miller  Steve M Lasley
Affiliation:1. Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA;2. Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
Abstract:Gulf War Illness (GWI) is a multi‐symptom disorder with features characteristic of persistent sickness behavior. Among conditions encountered in the Gulf War (GW) theater were physiological stressors (e.g., heat/cold/physical activity/sleep deprivation), prophylactic treatment with the reversible AChE inhibitor, pyridostigmine bromide (PB), the insect repellent, N,N‐diethyl‐meta‐toluamide (DEET), and potentially the nerve agent, sarin. Prior exposure to the anti‐inflammatory glucocorticoid, corticosterone (CORT), at levels associated with high physiological stress, can paradoxically prime the CNS to produce a robust proinflammatory response to neurotoxicants and systemic inflammation; such neuroinflammatory effects can be associated with sickness behavior. Here, we examined whether CORT primed the CNS to mount neuroinflammatory responses to GW exposures as a potential model of GWI. Male C57BL/6 mice were treated with chronic (14 days) PB/ DEET, subchronic (7–14 days) CORT, and acute exposure (day 15) to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. DFP alone caused marked brain‐wide neuroinflammation assessed by qPCR of tumor necrosis factor‐α, IL6, chemokine (C‐C motif) ligand 2, IL‐1β, leukemia inhibitory factor, and oncostatin M. Pre‐treatment with high physiological levels of CORT greatly augmented (up to 300‐fold) the neuroinflammatory responses to DFP. Anti‐inflammatory pre‐treatment with minocycline suppressed many proinflammatory responses to CORT+DFP. Our findings are suggestive of a possible critical, yet unrecognized interaction between the stressor/environment of the GW theater and agent exposure(s) unique to this war. Such exposures may in fact prime the CNS to amplify future neuroinflammatory responses to pathogens, injury, or toxicity. Such occurrences could potentially result in the prolonged episodes of sickness behavior observed in GWI.
image

Keywords:   CORT        DFP        GWI     microglia  minocycline  neuroinflammation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号