首页 | 官方网站   微博 | 高级检索  
     


The interaction of Na(+) and K(+) in the pore of cyclic nucleotide-gated channels
Authors:Gamel K  Torre V
Affiliation:Scuola Internazionale Superiore di Studi Avanzati and Instituto Nationale di Fiscia del la Materia-Unita' di Trieste, 34014 Trieste, Italy.
Abstract:The permeability ratio between K(+) and Na(+) ions in cyclic nucleotide-gated channels is close to 1, and the single channel conductance has almost the same value in the presence of K(+) or Na(+). Therefore, K(+) and Na(+) ions are thought to permeate with identical properties. In the alpha-subunit from bovine rods there is a loop of three prolines at positions 365 to 367. When proline 365 is mutated to a threonine, a cysteine, or an alanine, mutant channels exhibit a complex interaction between K(+) and Na(+) ions. Indeed K(+), Rb(+) and Cs(+) ions do not carry any significant macroscopic current through mutant channels P365T, P365C and P365A and block the current carried by Na(+) ions. Moreover in mutant P365T the presence of K(+) in the intracellular (or extracellular) medium caused the appearance of a large transient inward (or outward) current carried by Na(+) when the voltage command was quickly stepped to large negative (or positive) membrane voltages. This transient current is caused by a transient potentiation, i.e., an increase of the open probability. The permeation of organic cations through these mutant channels is almost identical to that through the wild type (w.t.) channel. Also in the w.t. channel a similar but smaller transient current is observed, associated to a slowing down of the channel gating evident when intracellular Na(+) is replaced with K(+). As a consequence, a rather simple mechanism can explain the complex behavior here described: when a K(+) ion is occupying the pore there is a profound blockage of the channel and a potentiation of gating immediately after the K(+) ion is driven out. Potentiation occurs because K(+) ions slow down the rate constant K(off) controlling channel closure. These results indicate that K(+) and Na(+) ions do not permeate through CNG channels in the same way and that K(+) ions influence the channel gating.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号