首页 | 官方网站   微博 | 高级检索  
     


Carbonyl Traps as Potential Protective Agents against Methimazole‑Induced Liver Injury
Authors:Reza Heidari  Hossein Niknahad  Akram Jamshidzadeh  Negar Azarpira  Mandana Bazyari  Asma Najibi
Affiliation:1. Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;2. Gerash School of Paramedical Sciences, Shiraz University of Medical Sciences, Gerash, Iran;3. Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran;4. Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;5. Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, International Branch (Kish), Shiraz, Iran
Abstract:Liver injury is a deleterious adverse effect associated with methimazole administration, and reactive intermediates are suspected to be involved in this complication. Glyoxal is an expected reactive intermediate produced during methimazole metabolism. Current investigation was undertaken to evaluate the role of carnosine, metformin, and N‐acetyl cysteine as putative glyoxal (carbonyl) traps, against methimazole‐induced hepatotoxicity. Methimazole (100 mg/kg, intraperitoneally) was administered to intact and/or glutathione (GSH)?depleted mice and the role of glyoxal trapping agents was investigated. Methimazole caused liver injury as revealed by an increase in serum alanine aminotransferase and aspartate aminotransferase. Moreover, lipid peroxidation and protein carbonylation occurred significantly in methimazole?treated animals’ liver. Hepatic GSH reservoirs were decreased, and inflammatory cells infiltration was observed in liver histopathology. Methimazole?induced hepatotoxicity was severe in GSH‐depleted mice and accompanied with interstitial hemorrhage and necrosis of the liver. Glyoxal trapping agents effectively diminished methimazole‐induced liver injury both in intact and/or GSH?depleted animals.
Keywords:Antithyroid Drugs  Drug‐Induced Liver Injury (DILI)  Endocrinology  Glyoxal  Reactive Metabolite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号