首页 | 官方网站   微博 | 高级检索  
     


Malate synthesis by dark carbon dioxide fixation in leaves
Authors:Levi C  Perchorowicz J T  Gibbs M
Affiliation:Institute for Photobiology of Cells and Organelles, Brandeis University, Waltham, Massachusetts 02154.
Abstract:The rates of dark CO2 fixation and the label distribution in malate following dark 14CO2 fixation in a C-4 plant (maize), a C-3 plant (sunflower), and two Crassulacean acid metabolism plants (Bryophyllum calycinum and Kalanchoë diagremontianum leaves and plantlets) are compared. Within the first 30 minutes of dark 14CO2 fixation, leaves of maize, B. calycinum, and sunflower, and K. diagremontianum plantlets fix CO2 at rates of 1.4, 3.4, 0.23, and 1.0 μmoles of CO2/mg of chlorophyll· hour, respectively. Net CO2 fixation stops within 3 hours in maize and sunflower, but Crassulaceans continue fixing CO2 for the duration of the 23-hour experiment.

A bacterial procedure using Lactobacillus plantarum ATCC No. 8014 and one using malic enzyme to remove the β-carboxyl (C4) from malate are compared. It is reported that highly purified malic enzyme and the bacterial method provide equivalent results. Less purified malic enzyme may overestimate the label in C4 as much as 15 to 20%.

The contribution of carbon atom 1 of malate is between 18 and 21% of the total carboxyl label after 1 minute of dark CO2 fixation. Isotopic labeling in the two carboxyls approached unity with time. The rate of increase is greatest in sunflower leaves and Kalanchoë plantlets. In addition, Kalanchoë leaves fix 14CO2 more rapidly than Kalanchoë plantlets and the equilibration of the malate carboxyls occurs more slowly. The rates of fixation and the randomization are tissue-specific. The rate of fixation does not correlate with the rate of randomization of isotope in the malate carboxyls.

Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号