首页 | 本学科首页   官方微博 | 高级检索  
     


Subtype specificity of the ryanodine receptor for Ca2+ signal amplification in excitation-contraction coupling.
Authors:T Yamazawa   H Takeshima   T Sakurai   M Endo     M Iino
Affiliation:Department of Pharmacology, Faculty of Medicine, The University of Tokyo, Japan.
Abstract:In excitable cells membrane depolarization is translated into intracellular Ca2+ signals. The ryanodine receptor (RyR) amplifies the Ca2+ signal by releasing Ca2+ from the intracellular Ca2+ store upon receipt of a message from the dihydropyridine receptor (DHPR) on the plasma membrane in striated muscle. There are two distinct mechanisms for the amplification of Ca2+ signalling. In cardiac cells depolarization-dependent Ca2+ influx through DHPR triggers Ca2+-induced Ca2+ release via RyR, while in skeletal muscle cells a voltage-induced change in DHPR is thought to be mechanically transmitted, without a requirement for Ca2+ influx, to RyR to cause it to open. In expression experiments using mutant skeletal myocytes lacking an intrinsic subtype of RyR (RyR-1), we demonstrate that RyR-1, but not the cardiac subtype (RyR-2), is capable of supporting skeletal muscle-type coupling. Furthermore, when RyR-2 was expressed in skeletal myocytes, we observed depolarization-independent spontaneous Ca2+ waves and oscillations, which suggests that RyR-2 is prone to regenerative Ca2+ release responses. These results demonstrate functional diversity among RyR subtypes and indicate that the subtype of RyR is the key to Ca2+ signal amplification.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号