Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (4): 110-117    DOI: 10.13523/j.cb.20140417
综述     
微生物合成黄酮类研究进展
赵莹, 刘津, 王长松, 赵广荣
天津大学化工学院 系统生物工程教育部重点实验室 天津 300072
Advances on Flavonoids Production of Engineered Microorganisms
ZHAO Ying, LIU Jin, WANG Chang-song, ZHAO Guang-rong
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
 全文: PDF(1019 KB)   HTML
摘要:

黄酮类化合物是植物特有的多酚类化合物,具有抗氧化、抗炎、抗肿瘤、改善血液循环等生理功能,在保健品、化妆品和医药等方面具有广阔的应用前景。黄酮类化合物主要通过植物提取制备,受时间空间及植物种类等因素限制,且分离纯化步骤复杂,产率较低。随着合成生物学与代谢工程的发展,构建黄酮类物质的生物合成代谢途径线路,并对基因来源、基因序列、基因组合方式、菌株底盘改造等方面进行筛选和优化已取得较大成果。现已能用工程酵母和大肠杆菌等微生物合成二氢黄酮、黄酮、异黄酮、黄酮醇、花色素和黄烷酮等黄酮类化合物,在此基础上还可经甲基化酶或糖基化酶修饰,增加新的生物活性。综述了目前国内外微生物合成各类黄酮类物质的研究进展,并对将来的发展趋势进行了讨论和分析。

关键词: 黄酮类微生物合成合成生物学重组工程菌    
Abstract:

Flavonoids, plant-specific polyphenolic compounds, have significant physiological activities, including antioxidant, anti-inflammatory effects, and improvement of blood circulation. They have promising markets for health products, cosmetics and medicines. At present, flavonoids are mainly extracted from plants, but their growth are restricted by the seasons, location and varieties, their separation and purification processes are complex and low efficiency. With the development of synthetic biology and metabolic engineering, the flavonoids metabolic circuits have been constructed, optimization and combination of gene sequences from different sources and chassis modification have been achieved. Now engineered yeast, Escherichia coli and other microorganisms have been able to produce 2s-flavanones, flavones, isoflavonoids, flavonols, anthocyanins and flavanones which can be modified to creat new products with noval biological activities by methylase or glycosylase. The research achievement on flavonoids production in engineered microorganisms was reviewed and the future trend of development was explored.

Key words: Flavonoids    Microbial Synthesis    Synthetic biology    Recombinant microorganism
收稿日期: 2014-02-18 出版日期: 2014-04-25
ZTFLH:  Q819  
基金资助:

国家重点基础研究发展计划(973计划)(2011CBA00800)、国家“863”计划(2012AA02A701)、天津市应用基础与前沿技术研究计划(13JCZDJC27600)资助项目

通讯作者: 赵广荣     E-mail: grzhao@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵莹, 刘津, 王长松, 赵广荣. 微生物合成黄酮类研究进展[J]. 中国生物工程杂志, 2014, 34(4): 110-117.

ZHAO Ying, LIU Jin, WANG Chang-song, ZHAO Guang-rong. Advances on Flavonoids Production of Engineered Microorganisms. China Biotechnology, 2014, 34(4): 110-117.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140417        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I4/110


[1] Yao L H, Jiang Y M, Shi J, et al. Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 2004,59(3):113-122.

[2] Middleton E, Kandaswami C, Theoharides T C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 2000,52(4):673-751.

[3] Rice-Evans C A, Miller N J, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine, 1996,20(7):933-956.

[4] Mavel S, Dikic B, Palakas S, et al. Synthesis and biological evaluation of a series of flavone derivatives as potential radioligands for imaging the multidrug resistance-associated protein 1 (ABCC1/MRP1). Bioorganic & Medicinal Chemistry, 2006,14(5):1599-1607.

[5] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001,126(2):485-493.

[6] Hwang E I, Kaneko M, Ohnishi Y, et al. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Applied and Environmental Microbiology, 2003,69(5):2699-2706.

[7] Santos C N, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metabolic Engineering, 2011,13(4):392-400.

[8] Jiang H, Morgan J A. Optimization of an in vivo plant P450 monooxygenase system in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2004,85(2):130-137.

[9] Yan Y, Kohli A, Koffas M A. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005,71(9):5610-5613.

[10] Koopman F, Beekwilder J, Crimi B, et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2012,11:155.

[11] Takamura Y, Nomura G. Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. Journal of General Microbiology, 1988,134(8):2249-2253.

[12] Miyahisa I, Kaneko M, Funa N, et al. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Applied Microbiology and Biotechnology, 2005,68(4):498-504.

[13] Leonard E, Lim K H, Saw P N, et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Applied and Environmental Microbiology, 2007,73(12):3877-3886.

[14] Burgard A P, Pharkya P, Maranas C D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 2003,84(6):647-657.

[15] Tepper N, Shlomi T. Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics, 2010,26(4):536-543.

[16] Fowler Z L, Gikandi W W, Koffas M A. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Applied and Environmental Microbiology, 2009,75(18):5831-5839.

[17] Xu P, Ranganathan S, Fowler Z L, et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metabolic Engineering, 2011,13(5):578-587.

[18] Zhu S, Wu J, Du G, et al. Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli. Applied and Environmental Microbiology, 2014, doi:10.1128/AEM. 03986-13.

[19] Wu J, Du G, Zhou J, et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 2013,16:48-55.

[20] Leonard E, Chemler J, Lim K H, et al. Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Applied Microbiology and Biotechnology, 2006,70(1):85-91.

[21] Fotsis T, Pepper M, Adlercreutz H, et al. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. The Journal of Nutrition, 1995,125(3 Suppl):790S-797S.

[22] 陈尚武,郝佳, 马会勤. 大豆异黄酮代谢途径在大肠杆菌中的构建及表达. 生物工程学报, 2007,23(6):1022-1028. Chen S W, Hao J, Ma H Q. Construction and expression of the soybean isoflavonoid biosynthetic pathway in Escherichia coli. Chinese Journal of Biotechnology, 2007,23(6):1022-1028.

[23] Sevrioukova I F, Li H, Zhang H, et al. Structure of a cytochrome P450-redox partner electron-transfer complex. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(5):1863-1868.

[24] Barnes H J, Arlotto M P, Waterman M R. Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1991,88(13):5597-5601.

[25] Katsuyama Y, Miyahisa I, Funa N, et al. One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Applied Microbiology and Biotechnology, 2007,73(5):1143-1149.

[26] Trantas E, Panopoulos N, Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metabolic Engineering, 2009,11(6):355-366.

[27] Leonard E, Koffas M A. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Applied and Environmental Microbiology, 2007,73(22):7246-7251.

[28] Formica J V, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology, 1995,33(12):1061-1080.

[29] Lamson D W, Brignall M S. Antioxidants and cancer, part 3: quercetin. Journal of Clinical Therapeutic, 2000,5(3):196-208.

[30] Leonard E, Yan Y, Koffas M A. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 2006,8(2):172-181.

[31] Kahkonen M P, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 2003,51(3):628-633.

[32] Noda Y, Kneyuki T, Igarashi K, et al. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology, 2000,148(2-3):119-123.

[33] Yan Y, Chemler J, Huang L, et al. Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 2005,71(7):3617-3623.

[34] Yan Y, Li Z, Koffas M A. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnology and Bioengineering, 2008,100(1):126-140.

[35] Higdon J V, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition, 2003,43(1):89-143.

[36] Muramatsu K, Fukuyo M, Hara Y. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. Journal of Nutritional Science and Vitaminology, 1986,32(6):613-622.

[37] Nagao T, Meguro S, Hase T, et al. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity, 2009,17(2):310-317.

[38] Chemler J A, Lock L T, Koffas M A, et al. Standardized biosynthesis of flavan-3-ols with effects on pancreatic beta-cell insulin secretion. Applied Microbiology and Biotechnology, 2007,77(4):797-807.

[39] Kim H, Park B S, Lee K G, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. Journal of Agricultural and Food Chemistry, 2005,53(22):8537-8541.

[40] Bao M, Lou Y. Isorhamnetin prevent endothelial cell injuries from oxidized LDL via activation of p38MAPK. European Journal of Pharmacology, 2006,547(1-3):22-30.

[41] Castrillo J L, Carrasco L. Action of 3-methylquercetin on poliovirus RNA replication. Journal of Virology, 1987,61(10):3319-3321.

[42] Kim M J, Kim B G, Ahn J H. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Applied Microbiology and Biotechnology, 2013,97(16):7195-7204.

[43] Zhang W Y, Lee J J, Kim I S, et al. 7-O-methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro. Biological & Pharmaceutical Bulletin, 2010,33(9):1494-1499.

[44] Malla S, Koffas M A, Kazlauskas R J, et al. Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Applied and Environmental Microbiology, 2012,78(3):684-694.

[45] Kramer C M, Prata R T, Willits M G, et al. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry, 2003,64(6):1069-1076.

[46] Thuan N H, Park J W, Sohng J K. Toward the production of flavone-7-O-β-d-glucopyranosides using Arabidopsis glycosyltransferase in Escherichia coli. Process Biochemistry,2013,48(11):1744-1748.

[47] Soundararajan R, Wishart A D, Rupasinghe H P, et al. Quercetin 3-glucoside protects neuroblastoma (SH-SY5Y) cells in vitro against oxidative damage by inducing sterol regulatory element-binding protein-2-mediated cholesterol biosynthesis. The Journal of Biological Chemistry, 2008,283(4):2231-2245.

[48] Juergenliemk G, Boje K, Huewel S, et al. In vitro studies indicate that miquelianin (quercetin 3-O-beta-D-glucuronopyranoside) is able to reach the CNS from the small intestine. Planta Medica, 2003,69(11):1013-1017.

[49] Yoon J A, Kim B G, Lee W J, et al. Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli. Applied and Environmental Microbiology, 2012,78(12):4256-4262.

[50] Walsh C T. Combinatorial biosynthesis of antibiotics: challenges and opportunities. Chembiochem, 2002,3(2-3):125-134.

[51] Katsuyama Y, Funa N, Miyahisa I, et al. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chemistry & Biology, 2007,14(6):613-621.

[52] Chemler J A, Yan Y, Leonard E, et al. Combinatorial mutasynthesis of flavonoid analogues from acrylic acids in microorganisms. Organic Letters, 2007,9(10):1855-1858.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[6] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[11] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[12] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[13] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[14] 谢华玲,李东巧,迟培娟,杨艳萍. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123.
[15] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.