Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (1): 114-121    
综述     
功能性包涵体的研究进展
罗莉1, 何勇智2, 张勇侠2, 王明蓉2
1. 中国医药集团总公司四川抗菌素工业研究所 成都 610052;
2. 成都生物制品研究所有限责任公司 成都 610023
Advances in the Study of non-classical Inclusion Bodies
LUO Li1, HE Yong-zhi2, ZHANG Yong-xia2, WANG Ming-rong2
1. Sichuan Industrial Institute of Antibiotics, China National Pharmaceutical Corp., Chengdu 610052, China;
2. Chengdu Institute of Biological Products Co., Ltd., Chengdu 610023, China
 全文: PDF(615 KB)   HTML
摘要: 利用原核系统表达外源重组蛋白的一个特点是表达蛋白多以包涵体形式存在。在过去人们一直认为包涵体是错误折叠、无生物活性的蛋白,需要经过变复性的过程重新获得有生物活性、可溶的蛋白,因而变复性条件的摸索迄今仍然是该领域的难点。但近几年的研究表明包涵体并非都是无生物活性的,功能性包涵体(或者称为非传统意义包涵体) 概念的提出是该领域的一个重大研究进展。由于功能性包涵体本身具有生物活性,可在非变性条件下提取,目前已经在生命科学的基础研究、生物制药、生物材料、生物催化等领域展现出良好的应用前景。重点从功能性包涵体的定义、形成机理、提取条件等近期研究进展进行综述,以期为原核细胞表达和工业生产重组蛋白药物提供新的思路。
关键词: 功能性包涵体非变性生物活性    
Abstract: Expression of heterologous genes in prokaryotic cell is a fast, simple and cheap way to produce large amount of target proteins, especially recombinant protein drugs. However, overexpression of recombinant protein often leads to the formation of aggregates called inclusion bodies(IBs). In the past,IBs were recognized as deposits of misfolded and inactive proteins, and denaturation/renaturantion steps is necessary for isolation of biologically active protein. Until recently, IBs have been described as biological activity, which can be extracted from non-denaturing conditions, named non-classical Inclusion bodies(ncIBs). This review which focuses on the definition, mechanism and extraction of ncIBs is expected to provide valuable references for the research and exploit of recombination protein productions.
Key words: non-classical Inclusion bodies(ncIBs)    non-denature    Bioactivity
收稿日期: 2012-10-08 出版日期: 2013-01-25
ZTFLH:  Q816  
基金资助: "十二五"重大新药创制科技重大专项项目资助(2011ZX09506-007)
通讯作者: 王明蓉     E-mail: mignrongw2007@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
罗莉
何勇智
张勇侠
王明蓉

引用本文:

罗莉, 何勇智, 张勇侠, 王明蓉. 功能性包涵体的研究进展[J]. 中国生物工程杂志, 2013, 33(1): 114-121.

LUO Li, HE Yong-zhi, ZHANG Yong-xia, WANG Ming-rong. Advances in the Study of non-classical Inclusion Bodies. China Biotechnology, 2013, 33(1): 114-121.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I1/114

[1] Jevševar S, Gaberc-Porekar V, Fonda I,et al.Production of nonclassical inclusion bodies from which correctly folded protein can be extracted.Biotechnol Progr, 2005, 21(2): 632-639.
[2] García-Fruitós E, González-Montalbán N, Morell M,et al.Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins.MicrobvCell Fact, 2005, 4(1): 27-32.
[3] Umetsu M, Tsumoto K, Nittaa S,et al.Nondenaturing solubilization of beta2 microglobulin from inclusion bodies by L-arginine.Biochem Bioph Res Co, 2005, 328(1): 189-197.
[4] Peternel Š, Bele M, Gaberc-Porekar V,et al.Nonclassical inclusion bodies in Escherichia coli.Microb Cell Fact, 2006, 5: 23-24.
[5] García-Fruitós E, Arís A, Villaverde A.Localization of functional polypeptides in bacterial inclusion bodies.Appl Environ Microb, 2007, 73(1): 289-294.
[6] Peternel Š, Grdadolnik J, Gaberc-Porekar V,et al.Engineering inclusion bodies for non denaturing extraction of functional proteins.Microb Cell Fact 2008, 7(1): 34-42.
[7] DM W, NH G.The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli.Australian Journal of Biotechnology, 1989, 3(1): 28-32.
[8] Tokatlidis K, Dhurjati P, Millet J,et al.High activity of inclusion bodies formed in Ecoli overproducing Clostridium thermocellum endoglucanase D.Febs Lett, 1991, 282(1): 205-208.
[9] González-Montalbán N, García-Fruitós E, Villaverde A.Recombinant protein solubility——does more mean better?.Nat Biotechnol, 2007, 25(7): 718-720.
[10] Kopito R R.Aggresomes,inclusion bodies and protein aggregation.Trends Cell Biol, 2000, 10(12): 524-530.
[11] Peternel Š, Komel R.Active protein aggregates produced in Escherichia coli. Int.J.Mol.Sci, 2011, 12(11): 8275-8287.
[12] García-Fruitós E, Vazquez E, Diez-Gil C,et al.Bacterial inclusion bodies:making gold from waste.Cell Press, 2012, 30(2): 65-70.
[13] Peternel Š, Bele M, Gaberc-Porekar V,et al.Inclusion bodies contraction with implications in biotechnology.Acta Chim Slov, 2008: 608-612.
[14] A JFK, Hartley DL.Formation of recombinant protein inclusion bodies in Escherichia coli.Trends Biotechnol, 1988, 6(5): 95-101.
[15] Vera A, N NGL, S AA,et al.The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures.Biotechnol Bioeng, 2007, 96(6): 1101-1106.
[16] Peternel Š, Gaberc-Porekar V, Komel R.Bacterial growth conditions affect quality of GFP expressed inside inclusion bodies.Acta Chim Slov, 2009, 56: 860-867.
[17] Sans C, Garcia-Fruitos E, Ferraz RM,et al.Inclusion bodies of fuculose-1-phosphate aldolase as stable and reusable biocatalysts.Biotechnol Progr, 2012, 28(2): 421-427.
[18] Rodríguez-Carmona E, Cano-Garrido O, Seras-Franzoso J,et al.Isolation of cell-free bacterial inclusion bodies.Microb Cell Fact, 2010, 9(1): 71-79.
[19] Arié J, Miot M, Sassoon N,et al.Formation of active inclusion bodies in the periplasm of Escherichia coli.Mol Microbiol, 2006, 62(2): 427-437.
[20] Wu W, Xing L, Zhou B,et al.Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli.Microb Cell Fact, 2011, 10(1): 9-16.
[21] Zhou B, Xing L, Wu W,et al.Small surfactant-like peptide can drive soluble proteins into active aggregates.Microb Cell Fact 2012, 11(1): 10-17.
[22] Nahalka J, Nidetzky B.Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates.Biotechnol Bioeng, 2007, 97(3): 454-461.
[23] Nahalka J.Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-D-glucose-1-phosphate.J Ind Microbiol Biotechnol, 2008, 35(4): 219-223.
[24] Nahalka J, Vikartovska A, Hrabarova E.A crosslinked inclusion body process for sialic acid synthesis.J Biotechnol, 2008, 134(1-2): 146-153.
[25] Peternel Š, Komel R.Isolation of biologically active nanomaterial(inclusion bodies) from bacterial cells.Microb Cell Fact, 2010, 9(1): 66-81.
[26] Peternel S.Bacterial cell disruption: a crucial step in protein production.New Biotechnology, 2011, 00(00): xx-xx.
[27] Tsumoto K, Umetsu M, Kumagai I,et al.Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine.Biochem Biophys Res Commun, 2003, 312(4): 1383-1386.
[28] Oberg K, Chrunyk BA, Wetzel R,et al.Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR.Biochemistry-Us, 1994, 33(9): 2628-2634.
[29] Fine M, Amuly R, Sandowski Y,et al.Recombinant gilthead seabream (Sparus aurata) insulin-like growth factor-I: subcloning, expression in Escherichia coli, purification and characterization.J Endocrinol, 1997, 153(1): 139-150.
[30] Paduel A, Chapnik-Cohen N, Gertler A,et al.Preparation and Characterization of Recombinant Dolphin Fish(Coryphaena hippurus) Growth Hormone.Protein Expres Purif, 1999, 16(3): 417-423.
[31] Carrio M M, Cubarsib R, Villaverde A.Fine architecture of bacterial inclusion bodies.Febs Lett, 2000, 471(1): 7-11.
[32] Kuczynska-Wisnik D, Zurawa-Janicka D, Narkiewicz J,et al.Escherichia coli small heat shock proteins IbpA/B enhance activity of enzymes sequestered in inclusion bodies.Acta Biochim Pol, 2004, 51(4): 925-931.
[33] Ami D, Natalello A, Gatti-Lafranconi P,et al.Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy.Febs Lett, 2005, 579(16): 3433-3436.
[34] Solomon G, Niv-Spector L, Gonen-Berger D,et al.Preparation of leptin antagonists by site-directed mutagenesis of human,ovine,rat,and mouse leptin's site III.Ann Ny Acad Sci, 2006, 1091: 531-539.
[35] Nahalka J, Gemeiner P, Bucko M,et al.Bioenergy beads:a tool for regeneration of ATP/NTP in biocatalytic synthesis.Artif Cells Blood Substit and Biotechnol, 2006, 34(5): 515-521.
[36] Peternel Š, Jevševar S, Bele M,et al.New properties of inclusion bodies with implications for biotechnology.Biotechnol Appl Biochem, 2008, 49(Pt 4): 239-246.
[37] Tsuji I, Mastui H, Ito T,et al.L-cysteine-enhanced renaturation of bioactive soluble tumor necrosis factor ligand family member LIGHT from inclusion bodies in Escherichia coli.Protein Expres Purif, 2011, 80(2): 239-245.
[38] Carvajal P, Gibert J, Campos N,et al.Activity of maize transglutaminase overexpressed in Escherichia coli inclusion bodies:an alternative to protein refolding.Biotechnol Progr, 2011, 27(1): 232-240.
[39] Li M, Fan H, Liu J H,et al.High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.Appl Biochem Biotech, 2012, 166(5): 1264-1274.
[40] Lu S C, Lin S C.Recovery of active N-acetyl-d-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.Enzyme Microb Tech, 2012, 50(1): 65-70.
[41] Liovic M, Ozir M, Zavec A B,et al.Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells.Microb Cell Fact, 2012, 11: 67-80.
[42] Singh S M, Sharma A, Upadhyay A K,et al.Solubilization of inclusion body proteins using n-propanol and its refolding into bioactive form.Protein Expres Purif, 2012, 81(1): 75-82.
[43] Walsh D J, Noble G P, Piro J R,et al.Non-reducing alkaline solubilization and rapid on-column refolding of recombinant prion protein.Prep Biochem and Biotechnol, 2012, 42(1): 77-86.
[44] Francis V G, Majeed M A, Gummadi S N.Recovery of functionally active recombinant human phospholipid scramblase 1 from inclusion bodies using N-lauroyl sarcosine.J Ind Microbiol Biotechnol, 2012, 39(7): 1041-1048.
[45] Nahalka J, Dib I, Nidetzky B.Encapsulation of Trigonopsis variabilis D-amino acid oxidase and fast comparison of the operational stabilities of free and immobilized preparations of the enzyme.Biotechnol Bioeng, 2008, 99(2): 251-260.
[1] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[2] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[3] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[4] 王冬冬, 张国利, 岳玉环, 吴广谋, 田园, 刘雨玲, 吉元刚, 王金鹏, 李建, 潘荣荣, 马洪圆. 抗A型产气荚膜梭菌α毒素全人源双价单链抗体的构建、表达及其活性的初步研究[J]. 中国生物工程杂志, 2017, 37(4): 18-25.
[5] 冯天祥, 王玲, 陈海敏, 盛清, 左锐, 谢文杰. 植物内生放线菌功能及生物活性物质研究进展[J]. 中国生物工程杂志, 2015, 35(4): 98-106.
[6] 孙静, 王斌, 段志青, 胡凝珠, 李建芳, 李彦涵, 胡云章. 重组人LIF融合蛋白表达纯化及其活性鉴定[J]. 中国生物工程杂志, 2013, 33(5): 50-55.
[7] 路庆鹏, 许正宏, 史劲松, 窦文芳. 毕赤酵母STE13基因敲除对GGH表达及其生物活性的影响[J]. 中国生物工程杂志, 2013, 33(4): 28-33.
[8] 郭云萍, 孙璐, 张立剑, 王增禄, 高超, 杨强, 刘毅, 张英起, 屈延, 陶凌. 无标签重组人硫氧还蛋白的大规模表达、纯化及活性检测[J]. 中国生物工程杂志, 2012, 32(08): 62-67.
[9] 李娟, 余榕捷, 王静静, 黄霖, 刘晓飞. 重组PAC1-EC1(N)对表达不同PAC1变体的细胞系细胞活性的影响[J]. 中国生物工程杂志, 2011, 31(06): 22-28.
[10] 汤熙翔, 易志伟, 李宁, 马群, 李慧, 秦丹, 肖湘. 深海宏基因组文库克隆子发酵产物的生物活性筛选[J]. 中国生物工程杂志, 2011, 31(06): 58-63.
[11] 妙亮, 徐立华, 冀胥, 边六交. 可溶型三聚体血管生长抑制因子Kringle5的克隆,表达,纯化及活性研究[J]. 中国生物工程杂志, 2011, 31(03): 18-22.
[12] 王小溪, 李娟, 劳勋, 张洪丹, 黄静, 吴自荣. 人酪酪肽及其衍生物的克隆、表达及活性测定[J]. 中国生物工程杂志, 2011, 31(02): 7-11.
[13] 芦丽亚 宋维 游晓慧 江婷 赵凌侠. 用无选择标记的转基因烟草表达胸腺素α1(Tα1)[J]. 中国生物工程杂志, 2010, 30(03): 1-8.
[14] 罗建平 滑世轩 赵行 岑东 吕建新 涂植光 裴仁治. NK4蛋白在大肠杆菌中的表达及其活性研究[J]. 中国生物工程杂志, 2009, 29(10): 33-37.
[15] 唐晖1,汤绍辉1,杨冬华1,吕正兵2,余威2,张耀洲2,周天鸿3,陈炫1,刘芳1,肖昕4. DC-SIGN蛋白在家蚕系统中的表达及生物活性研究[J]. 中国生物工程杂志, 2009, 29(06): 36-40.