Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (1): 38-46    DOI: 10.13523/j.cb.20160106
研究报告     
独行菜种子转录组的高通量测序及分析
周茜1, 赵惠新1, 李萍萍1, 曾卫军1, 李艳红1, 葛风伟1, 赵君洁1, 赵和平2
1. 新疆特殊环境物种多样性应用与调控重点实验室 新疆师范大学生命科学学院 乌鲁木齐 830054;
2. 北京师范大学生命科学学院 抗性基因资源与分子发育北京市重点实验室 北京 100875
De novo Characterization of the Seed Transcriptome of Lepidium apetalum Willd
ZHOU Qian1, ZHAO Hui-xin1, LI Ping-ping1, ZENG Wei-jun1, LI Yan-hong1, GE Feng-wei1, ZHAO Jun-jie1, ZHAO He-ping2
1. Xinjiang Key Laboratory of Special Species Diversity Application and Regulatory, College of Life Science, Xinjiang Normal University, Urumqi 830054, China;
2. Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
 全文: PDF  HTML
摘要:

独行菜种子为我国传统常用中药,从中已提取出多种药用活性成分,但目前尚不清楚其次级代谢过程中这些活性物质合成的遗传基础。采用Illumina HiseqTM 2000高通量测序平台对独行菜种子转录组进行测序,经de novo组装后获得40 303条unigene。进一步利用六大公共数据库进行同源比对,注释了27 935条unigene。研究发现,534个基因参与了独行菜次生物质的合成和代谢,其中在芥子苷、黄酮类和芪类化合物生物合成途径中的unigene分别有4个、19个和69个,在苯丙氨酸代谢途径中的unigene有92个。这些基因可能参与独行菜种子药性活性物质的生物合成,并分析获得了参与上述合成代谢途径的13个关键基因的同源序列。另外,从转录组序列中搜索到6 304个SSR位点,分布于5 306条unigene中,出现频率为15.64%。研究结果不仅为挖掘独行菜种子药用次生代谢物生物合成关键基因提供了基础数据信息,而且为独行菜遗传多样性研究和分子标记开发奠定了分子基础。

关键词: 转录组SSR独行菜次生代谢    
Abstract:

Lepidium apetalum Willd is an important traditional Chinese medicine. Various active components have been extracted from the Lepidium apetalum. However, the genetic basis for their activity is virtually unknown. The transcriptome of Lepidium apetalum was sequenced using the Illumina HiSeqTM 2000 sequencing platform. The clean reads were then de novo assembled into 40 303 unigenes. 27 935 unigene were annotated by a similarity search against SiX public databases. The results showed that 534 genes were assigned to second metabolic pathway. Among them, 4 unigenes were mapped to the glucosinolate, 19 to flavonoids, stilbenoid, diarylheptanoid, 69 to gingerol shikimate biosynthesis pathways, and 92 unigenes were respectively mapped to the phenylalanine metabolism pathways, suggesting that they are involved in these pathways of pharmaceutically important. Thirteen homologous fragments of key genes identified were referred to these pathways. In addition, a total of 6 304 SSRs were identified from the sequence of transcription, distributed in 5 306 unigenes(15.64%). This work not only provides many valuable basal data for gene cloning and molecular biology research, but also lays the foundation for genetic diversity analysis and development of molecular marker in Lepidium apetalum.

Key words: Second metabolism    Transcriptome    Lepidium apetalum Willd    Simple sequence repeat
收稿日期: 2015-09-08 出版日期: 2016-01-11
ZTFLH:  Q785  
基金资助:

新疆维吾尔自治区重点实验室项目(XJSD2015-01),国家自然科学基金(31460041),抗性基因资源与分子发育北京市重点实验室开放课题(2015GD03)资助项目

通讯作者: 赵惠新,赵和平     E-mail: zhaohuixin101@sina.com;hpzhao@bnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周茜
李萍萍
曾卫军
李艳红
葛凤伟
杨娜
赵惠新

引用本文:

周茜, 赵惠新, 李萍萍, 曾卫军, 李艳红, 葛风伟, 赵君洁, 赵和平. 独行菜种子转录组的高通量测序及分析[J]. 中国生物工程杂志, 2016, 36(1): 38-46.

ZHOU Qian, ZHAO Hui-xin, LI Ping-ping, ZENG Wei-jun, LI Yan-hong, GE Feng-wei, ZHAO Jun-jie, ZHAO He-ping. De novo Characterization of the Seed Transcriptome of Lepidium apetalum Willd. China Biotechnology, 2016, 36(1): 38-46.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160106        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I1/38

[1] 吴征镒. 中国植物志. 北京:科学出版社,1987:33,57. Wu Z Y. Flora of China. Beijing:Science Press, 1987:33,57.
[2] 冯志毅,王小兰,郑晓珂. 葶苈子的本草考证.世界科学技术中医药现代化,2014, 16(9): 1938-1941. Feng Z Y, Wang X L, Zheng X K, Herbal textual research on semen Lepidii seu Descurainiae. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2014, 16(9): 1938-1941.
[3] 周喜丹,唐力英,周国洪,等. 南北葶苈子的最新研究进展. 中国中药杂志,2014, 39(24): 4699-4708. Zhou X D, Tang L Y, Zhou G H, et al. Advances on Lepidii Semen and Descurainiae Semen. Chinese Journal of Chinese Materia Medica, 2014, 39(24): 4699-4708.
[4] 李红伟,郑晓珂,弓建红,等. 独行菜和播娘蒿化学成分及药理作用研究进展. 药物评价研究,2013, 36(3): 235-240. Li H W, Zheng X K, Gong J H, et al. Research progress in chemical constituents of Lepidium apetalum and Descurainia sophia and their pharmacological activities. Drug Evaluation Research, 2013, 36(3): 235-240.
[5] Kalia R K, Rai M K, Kalia S, et al. Microsatellite mark-ers:an overview of the recent progress in plants. Eu-phytica, 2011, 177(3): 309-334.
[6] Milee A, Neeta S, Harish P. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep, 2008, 27(4): 617-631.
[7] 李小白,向林,罗洁,等. 转录组测序(RNA-seq)策略及其数据在分子标记开发上的应用. 中国细胞生物学报,2013, 35(5): 1-8. Li X B, Xiang L, Luo J, et al. The strategy of RNA-seq, application and development of molecular marker derived form RNA-seq . Chinese Journal of Cell Biology, 2013, 35(5): 1-8.
[8] Li C, Zhu Y, Guo X, et al. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C A Meyer . BMC Genomics, 2013, 14(1): 245.
[9] 王兴春,谭河林,陈钊,等. 基于RNA-Seq技术的连翘转录组组装与分析及SSR分子标记的开发. 中国科学:生命科学,2015, 45(3): 301-310. Wang X C, Tan H L, Chen Z, et al. Assembly and characterization of the transcriptome and development of SSR markers in Forsythia suspensa based on RNA-Seq technology. Science China(Life Sciences), 2015, 45(3): 301-310.
[10] 齐琳洁,龙平,蒋超,等. 黄芩基因组SSR分子标记的开发及遗传多样性分析. 药学学报, 2015, 50(4): 500-505. Qi L J, Long P, Jiang C, et al. Development of microsatellites and genetic diversity analysis of Scutellaria baicalensis Georgi using genomic-SSR markers.Acta Pharmaceutica Sinica, 2015, 50(4): 500-505.
[11] Chen J, Hou K, Qin P, et al. RNA-Seq for gene identification and transcript profiling of three Stevia rebadiana genotypes. BMC Genomics, 2014, 15(1): 571-582.
[12] Zhang N, Zhang H J, Zhao B, et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research, 2014, 56(1): 39-50.
[13] Lv J, Liu P, Gao B, et al. Transcriptome analysis of the Potunus trituberculatus: de novo assembly, growth-related gene identification and marker discovery. PLoS ONE, 2014, 9(4): e94055.
[14] 赵惠新,李群,周晶,等. 短命植物独行菜种子萌发过程对低温的耐受特性. 云南植物研究,2010, 32(5): 448-454. Zhao H X, Li Q, Zhou J, et al. The characteristics of low temperature tolerance during seed germination of the ephemeral plant Lepidium apetalum (Cruciferae). Acta Botanica Yunnanica, 2010, 32(5): 448-454.
[15] Lopez-Molina L, Mongrand S, McLachlin D T, et al. ABI5 acts downstream of ABI3 to execute an ABA- dependent growth arrest during germination. Plant J, 2002, 32(3): 317-328.
[16] Rajjou L, Gallardo K, Debeaujon I, et al. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol, 2004, 134(4): 1598-1613.
[17] Rajjou L, Belghazi M, Huguet R, et al. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms . Plant Physiol. 2006, 141(3): 910-923.
[18] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652.
[19] Conesa A, Götz S, García-Gómez J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21(18): 3674-3676.
[20] Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 2006, 34(suppl. 2): W293-W297.
[21] Yatusevich R, Mugford S G, Matthewman C, et al. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Plant Journal, 2010, 62(1): 1-11.
[22] 邢文,金晓玲. 调控植物类黄酮生物合成的MYB转录因子研究进展. 分子植物育种,2015, 13(3): 689-696. Xing W, Jin X L. Recent advances of MYB transcription factors involved in the regulation of flavonoid biosynthesis. Molecular Plant Breeding, 2015, 13(3): 689-696.
[23] Hanhineva K, Kokko H, Siljanen H, et al. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria×ananassa). Journal of Experimental Botany, 2009, 60(7): 2093-2106.
[24] Ehlting J, Hamberger B, Million-Rousseau R, et al. Cytochromes P450 in phenolic metabolism. Phytochem Rev, 2006, 5(2): 239-270.
[25] Ralston L, Yu O. Metabolons in volving plant cytochrome P450s. Phytochem Rev, 2006, 5(2): 459-472.
[26] Bourgaud F, Hehn A, Larbat R, et al. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev, 2006, 5(2): 293-308.
[27] Coon M J. Cytochrome P450: nature's most versatile biological catalyst. Annual Review of Pharmacology and Toxicology, 2005, 45(1): 1-25.
[28] Hao D C, Ma P, Mu J, et al.De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum. Science China(Life Sciences), 2012, 55(5): 452-466.
[29] Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics, 2010, 11: 262.
[30] 曹纬国,刘志勤,邵云,等. 黄酮类化合物药理作用的研究进展. 西北植物学报,2003, 23(12): 2241-2247. Cao W G, Liu Z Q, Shao Y, et al. A progress in pharmacological research of flavonoids. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(12): 2241-2247.
[31] 康亚兰,裴瑾,蔡文龙,等. 药用植物黄酮类化合物代谢合成途径及相关功能基因的研究进展. 中草药,2014, 45(9): 1336-1341. Kang Y L, Pei J, Cai W L, et al. Research progress on flavonoid metabolic synthesis pathway and related function genes in medicinal plants. Chinese Traditional and Herbal Drugs, 2014, 24(9): 1336-1341.
[32] 何水林,郑金贵,林明,等. 植物芪类次生代谢物的功能、合成调控及基因工程研究进展. 农业生物技术学报,2004, 12(1): 102-108. He S L, Zheng J G, Lin M, et al. Advances of biological function, regulatory mechanism of biosynthesia and genetic engineering of stillbenes in plants. Journal of Agricultural Biotechnology, 2004, 12(1): 102-108.
[33] 褚洪标,曾红,梁生林,等. 二岐马先蒿苯丙素类活性成分研究. 中草药, 2014, 45(9): 1223-1227. Chu H B, Zeng H, Liang S L, et al. Phenylpropanoids constituents of Pedicularis dichotoma. Chinese Traditional and Herbal Drugs, 2014, 45(9): 1223-1227.
[34] 王毓杰,谭荣,周礼仕,等. 长毛风毛菊中苯丙素类化学成分研究. 中药材, 2015, 38(1): 101-103. Wang Y J, Tan R, Zhou L S, et al. Phenylpropanoids from Saussureae hieracioides. Journal of Chinese Medicinal Material, 2015, 38(1): 101-103.
[35] Kuete V. Health Effects of Alkaloids from African Medicinal Plants. America:Toxicological Survey of African Medicinal Plants. 2014: 611-633.
[36] 张利达,唐克轩. 植物EST-SSR标记开发及其应用. 基因组学与应用生物学, 2010, 29(3): 534-541. Zhang L D, Tang K X. Development of plant EST-SSR markers and its application. Genomics and Applied Biology, 2010, 29(3): 534-541.
[37] 王森,张震,姜倪皓,等. 半夏转录组中的SSR位点信息分析. 中药材, 2014, 37(9): 1567-1570. Wang S, Zhang Z, Jiang N H, et al. SSR Informationin transcriptome of Pinellia ternate. Journal of Chinese Medicinal Materials, 2014, 37(9): 1567-1570.
[38] 王东,曹玲亚,高建平. 党参转录组中SSR位点信息分析. 中草药,2014, 45(16): 2390-2394. Wang D, Cao L Y, Gao J P. Data mining of simple sequence repeats in Codonopsis pilosula transcriptome, Chinese Traditional and Herbal Drugs, 2014, 45(16): 2390-2394.
[39] 杨维泽,金航,赵振玲,等. 西洋参EST资源的SSR信息分析. 西南农业学报,2011, 24(1): 275-278. Yang W Z, Jin H, Zhao Z L, et al. Analysis of SSR Informationin EST Resource of Panax quinquefolium L.. Southwest China Journal of Agricultural Sciences, 2011, 24(1): 275-278.

[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 何官榕,何碧珠,吴沙沙,石京山,陈集双,兰思仁. 多叶斑叶兰繁殖体系建立及基于转录组的发育调控途径功能基因研究[J]. 中国生物工程杂志, 2018, 38(12): 57-64.
[3] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[4] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.
[5] 梁士博, 刘佳莹, 刘杰, 杨江涛, 李集临, 张延明. NGS技术在作物基因组研究中的应用[J]. 中国生物工程杂志, 2017, 37(2): 111-120.
[6] 苏稚喆, 王雪华, 杨华, 孙焕, 魏炜. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4): 69-77.
[7] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[8] 敖妍, 马履一, 韩树文, 杨晓辉. 基于高通量测序的文冠果转录组分析[J]. 中国生物工程杂志, 2015, 35(7): 22-29.
[9] 李真, 刘兆雨, 徐丹, 陈婷, 孟赞, 唐勇, 彭彦. 星形胶质细胞通过CX47促进少突胶质前体细胞增殖[J]. 中国生物工程杂志, 2015, 35(12): 21-29.
[10] 张楠, 孙桂玲, 戴均贵, 杨艳芳, 刘洪伟, 邱德有. 银杏细胞转录组高通量测序及分析[J]. 中国生物工程杂志, 2013, 33(5): 112-119.
[11] 张采波, 张艳花, 刘和洋, 汪瀚宇, 曾文兵, 荣廷昭, 曹墨菊. 利用SRAP和SSR标记构建空间诱变新选玉米自交系指纹图谱[J]. 中国生物工程杂志, 2013, 33(10): 103-110.
[12] 吕昌勇, 陈朝银, 葛锋, 刘迪秋, 孔祥君. 微生物分子生态学研究方法的新进展[J]. 中国生物工程杂志, 2012, 32(08): 111-118.
[13] 吕志伟, 吴文平, 毕丽伟, 江星星, 王雅英. 建立金线莲原球茎悬浮体系生产次生代谢产物[J]. 中国生物工程杂志, 2012, 32(05): 43-50.
[14] 王兴春, 杨致荣, 王敏, 李玮, 李生才. 高通量测序技术及其应用[J]. 中国生物工程杂志, 2012, 32(01): 109-114.
[15] 刘新星, 陈超. 基于短序列测序数据的四倍体拟南芥转录组研究[J]. 中国生物工程杂志, 2011, 31(7): 45-53.