Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 8-14    DOI: 10.13523/j.cb.20161002
研究报告     
玉米隐性核不育突变体ms14的遗传分析与基因定位
余自青1,2, 吴锁伟1,2, 张丹凤1,2, 柳双双1,2, 谢科1,2, 饶力群1, 万向元1,2
1 湖南农业大学生物科学技术学院 长沙 410128;
2 北京首佳利华科技有限公司 现代生物农业产业技术研究院 北京 100192
Genetic Analysis and Gene Mapping of Recessive Genic Male Sterility14 (ms14) Mutant in Maize
YU Zi-qing1,2, WU Suo-wei1,2, ZHANG Dan-feng1,2, LIU Shuang-shuang1,2, XIE Ke1,2, RAO Li-qun1, WAN Xiang-yuan1,2
1. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
2. Institute of Industrial Technology on Modern Bio-Agriculture, Beijing Shou Jia Li Hua Sci-Tech Co. Ltd., Beijing 100192, China
 全文: PDF(811 KB)   HTML
摘要:

玉米雄性不育材料是一种宝贵的种质资源,不育基因的遗传分析与定位研究对玉米分子育种和杂种优势利用具有重要价值。通过对从美国引进的玉米雄性不育突变体材料ms14进行雄花育性鉴定和花药I2-KI染色,表明该突变体是无花粉型雄性不育;通过不育突变体ms14与正常自交系郑58、昌7-2杂交获得F1,然后自交构建两个F2遗传分离群体(ms14×郑58和ms14×昌7-2),并进行雄花育性调查、数据统计和遗传分析,发现可育株数与不育株数的分离比是3∶1,表明该突变体由隐性单基因控制;通过SSR等分子标记与不育位点的连锁分析,将ms14基因定位在玉米第1染色体的SSR标记umc2025和umc1676之间,遗传距离分别是2.2cM和0.3cM。对玉米不育基因ms14的遗传分析和初步定位,为该基因的精细定位和克隆、不育机理的解析及其产业化应用奠定了基础。

关键词: 隐性核雄性不育基因定位ms14玉米遗传分析    
Abstract:

Maize (Zea mays L.) genic male sterility mutant lines are one kind of elite germplasm, which is helpful to genetics and breeding research and hybrid production in maize. A maize genic male sterility mutant, male sterility14 (ms14) was preliminary studied. Firstly, phenotypical analysis and I2-KI dyeing of ms14 tassels and anthers showed that ms14 mutant is completely pollen sterile and exerts no anthers. Secondly, genetic analysis using two F2 segregation populations of ms14 (ms14×zheng58 and ms14×chang7-2), the ratio of fertile to sterile plants is 3 to 1, which shows that the ms14 mutant is controlled by a recessive genic male sterility gene. Thirdly, through the linkage analysis between ms14 locus and molecular markers in the F2 segregation populations of ms14 (ms14×chang7-2), the ms14 gene is roughly mapped to an interval on Chromosome 1 between SSR markers umc2025 and umc1676, with the genetic distance of 2.2 cM and 0.3 cM, respectively. Finally, the potential application value of the ms14 gene in maize hybrid breeding and production is discussed.

Key words: Recessive genic male sterility    Gene mapping    Zea mays    Genetic analysis    ms14
收稿日期: 2016-03-02 出版日期: 2016-10-25
ZTFLH:  Q785  
基金资助:

国家国际科技合作项目(2015DFA30640)、国家科技支撑计划(2014BAD01B02)、国家创新基金(14C26211100166)、北京市科技计划(Z141100003714124)资助项目

通讯作者: 万向元,电子信箱:wanxiangyuan@sjlhtech.com,wanxy2005@163.com     E-mail: wanxiangyuan@sjlhtech.com,wanxy2005@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

余自青, 吴锁伟, 张丹凤, 柳双双, 谢科, 饶力群, 万向元. 玉米隐性核不育突变体ms14的遗传分析与基因定位[J]. 中国生物工程杂志, 2016, 36(10): 8-14.

YU Zi-qing, WU Suo-wei, ZHANG Dan-feng, LIU Shuang-shuang, XIE Ke, RAO Li-qun, WAN Xiang-yuan. Genetic Analysis and Gene Mapping of Recessive Genic Male Sterility14 (ms14) Mutant in Maize. China Biotechnology, 2016, 36(10): 8-14.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161002        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/8

[1] Timofejeva L, Skibbe D S, Lee S, et al. Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3(Bethesda), 2013, 3: 231-249.
[2] 吴锁伟,方才臣,万向元,等. 玉米隐性核雄性不育基因研究进展及其育种应用途径分析. 分子植物育种(网络版), 2012, 10:1001-1011. Wu S W, Fang C C, Wan X Y, et al. Research progress and breeding utilization strategies of recessive genic male sterility genes in maize.Molecular Plant Breeding (online), 2012, 10:1001-1011.
[3] 万向元,吴锁伟,周岩,等. 植物花粉发育调控基因 Ms1 及其编码蛋白, 中国发明专利, CN201410381072.5,2014. Wan XY,Wu S W,Zhou Y, et al. The DNA sequence and the coded protein of Ms1 gene which controls the male fertility of plants. Chinese patent, CN201410381072.5, 2014.
[4] 万向元,吴锁伟,谢科,等. 一种控制玉米雄性生育力的 ZmMs7 基因序列及其编码蛋白,中国发明专利,CN201410338212.0,2014. Wan X Y,Wu S W,Xie K, et al. The DNA sequence and the coded protein of ZmMs7 gene which controls the male fertility of maize. Chinese patent, CN201410338212.0, 2014.
[5] Wang D, Skibbe D S, Walbot V. Maize male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reprod, 2013, 26(4): 329-338.
[6] Albertsen M C, Fox T, Leonard A, et al. Cloning and use of the ms9 gene from maize, United States Patent, US20160024520A1, 2016.
[7] Chaubal R, Anderson J R, Trimnell M R, et al. The transformation of anthers in the msca1 mutant of maize. Planta, 2003, 216: 778-788.
[8] Albertsen M C, Fox T, Trimnell M, et al. Msca1 nucleotide sequences impacting plant male fertility and method of using same, United States Patent, US20090038027A1, 2009.
[9] Wu Y, Hershey H. Nucleotide sequences mediating plant male fertility and method of using same. United States Patent, US20110173725A1, 2011.
[10] Vernoud V, Laigle G, Rozier F, et al. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J, 2009, 59: 883-894.
[11] Wang C J, Nan G L, Kelliher T, et al. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139: 2594-2603.
[12] 万向元,吴锁伟,周岩,等.一种玉米花粉减数分裂后发育调控基因 Ms30 的DNA 序列及其编码蛋白,中国发明专利,CN201410703778.9,2014. Wan X Y,Wu S W,Zhou Y, et al. The DNA sequence and the coded protein of a pollen post-meiotic developmental gene Ms30 in maize. Chinese patent, CN201410703778.9, 2014.
[13] Moon J, Skibbe D, Timofejeva L, et al. Regulation of cell divisions and differentiation by Male Sterility32 is required for anther development in maize. The Plant Journal, 2013, 76: 592-602.
[14] Cigan A M, Unger E, Xu R J, et al. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001, 14: 135-142.
[15] Hondred D, Young J K, Brink K, et al. Plant genomic DNA flanking SPT event and methods for identifying SPT event. United States Patent, US20090210970A1,2009.
[16] 王超,安学丽,万向元,等.植物隐性核雄性不育基因育种技术体系的研究进展与展望,中国生物工程杂志,2013, 33(10): 124-130. Wang C, An X L, Wan X Y, et al. Development and prospect of breeding technological system by recessive genic male-sterile genes in plants. China Biotechnology, 2013, 33(10): 124-130.
[17] Wu Y, Fox T W, Trimnell M R, et al. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2015, doi: 10.1111/pbi.12477.
[18] 万向元,吴锁伟,谢科,等. 基于 Ms1 基因构建的介导玉米雄性生育力的多控不育载体及其应用,中国发明专利,CN201510298173.0,2015. Wan X Y,Wu S W,Xie K, et al. The multi-control male sterility constructs based on Ms1 gene and their application. Chinese patent, CN201510298173.0, 2015.
[19] 万向元,谢科,吴锁伟,等. 一种基于 Ms7 基因构建的多控不育表达载体及其用于保持和繁殖玉米隐性核不育系的方法,中国发明专利,CN201510301333.2,2015. Wan X Y, Xie K, Wu S W,et al. The multi-control male sterility constructs based on Ms7 gene and their application in maintaining and producing maize recessive genic male sterility lines. Chinese patent, CN201510301333.2, 2015.
[20] 万向元,吴锁伟,谢科,等. 一种基于 Ms30 基因建立的玉米雄性不育系保持和繁殖的方法,中国发明专利,CN201510300778.9,2015. Wan X Y, Xie K, Wu S W,et al. The methods of maintaining and producing maize recessive genic male sterility lines based on Ms30 gene. Chinese patent, CN201510300778.9, 2015.
[21] Beadle G W. Genes in maize for pollen sterility, Genetics, 1932, 17: 413-431.
[22] Duvick D N. Cytoplasmic pollen sterility in corn. Advan Genet, 1965, 13:1-56.
[23] CIMMYT. Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. 2005. Third Edition. Mexico, EI Batan,D.F.: CIMMYT.
[24] Wu S W, Yu Z W, Wang F G, et al. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT) from maize (Zea mays L.). Mol Biotech, 2007, 32: 102-112.

[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[9] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[10] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[11] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[12] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[13] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[14] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.
[15] 柳双双,吴锁伟,饶力群,万向元. 玉米核雄性不育的分子机制研究与应用分析[J]. 中国生物工程杂志, 2018, 38(1): 100-107.