Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (5): 118-124    DOI: 10.13523/j.cb.20160517
综述     
提高大肠杆菌可溶性重组蛋白表达产率的研究进展
张宇萌1, 童梅2, 陆小冬2, 米月1, 徐晨2, 姚文兵1
1. 中国药科大学生命科学与技术学院 南京 210009;
2. 北京三元基因药业股份有限公司 北京市长效干扰素工程技术研究中心 北京 102600
Advances in Promoting Soluble Expression of Recombinant Protein in Escherichia coli
ZHANG Yu-meng1, TONG Mei2, LU Xiao-dong2, MI Yue1, XU Chen2, YAO Wen-bing1
1. Institute of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China;
2. Beijing Tri-Prime Genetic Engineering Co., Ltd, Engineering Research Center of Beijing of Pegylated Interferon, Beijing 102600, China
 全文: PDF(481 KB)   HTML
摘要:

大肠杆菌表达重组蛋白相比真核细胞具有成本低廉、大规模发酵容易、条件易于自动化控制等优点,通过大肠杆菌表达重组蛋白是一种高效、经济的途径,重组蛋白表达量可达到大肠杆菌总蛋白质量的50%。具有正常生化活性的重组蛋白通常为可溶性形式,因而对于以得到活性产物(如抗体、酶等)为目的的研究,通常采用可溶性表达途径。目前已有多种以可溶性重组蛋白为活性物质的治疗性药物经批准上市,但并非所有外源基因均能实现可溶性高表达,因此重组蛋白的可溶性高表达具有重要研究价值。在总结近年提高经大肠杆菌可溶性表达重组蛋白产率研究的基础上,从启动子的选择、SD序列的引入、信号肽的优化、宿主细胞的选择、共表达其他蛋白质,高密度发酵等方面阐释在大肠杆菌中提高可溶性重组蛋白表达产率的方法。

关键词: 高密度发酵核酸酶大肠杆菌可溶性表达分子伴侣    
Abstract:

Recombinant protein expression in Escherichia coli (E. coli) is sound and effective with the protein expression taking up to 50 percent of the total protein. The soluble recombinant proteins usually have biochemical activities, these proteins include antibodies and enzymes. Here are many soluble recombinant proteins have been approved as drugs, so it is crucial to research how to promote soluble expression of recombinant proteins in E. coli. Here the researches about improving yield of soluble expression of recombinant protein by E. coli have been summarized thoroughly. Variables at stages of a protein expression such as promoter system, SD sequence, signal peptide, host strains, co-expression of other proteins and high cell density cultivation to optimize soluble expression in E.coli are discussed.

Key words: Soluble expression    Molecular chaperons    E.coli    High cell density cultivation    Nuclease
收稿日期: 2015-11-12 出版日期: 2015-12-22
ZTFLH:  Q591.2  
基金资助:

北京市科技计划(Z141100000514008)资助项目

通讯作者: 徐晨, 姚文兵     E-mail: xuchen@triprime.com;wbyao@cup.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张宇萌
童梅
陆小冬
米月
徐晨
姚文兵

引用本文:

张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.

ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, XU Chen, YAO Wen-bing. Advances in Promoting Soluble Expression of Recombinant Protein in Escherichia coli. China Biotechnology, 2016, 36(5): 118-124.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160517        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I5/118

[1] Walsh G. Biopharmaceutical benchmarks. Nature Biotechnol, 2006, 24(7): 769-765.
[2] Datar R V, Cartwright T, Rosen C C. Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Bio/Technology, 1993, 11(3):349-357.
[3] Gold L. Expression of heterologous proteins in Escherichia coli. Methods Enzymol, 1990, 185: 11-14.
[4] Hodgson J. Emphasis has shifted from the vector construct to the host organism. Bio/Technology, 1993, 11(3):887-893.
[5] Shatzman A R. Expression systems. Curr Opin Biotechnol, 1995, 6: 491-493.
[6] Olins P O, Lee S C. Recent advances in heterologous gene expression in Escherichia coli. Curr Opin Biotechnol, 1993, 4(5):520-525.
[7] Ritz D, Beckwith J. Roles of thiolredox pathways in bacteria. Annu Rev Microbiol, 2001, 55: 21-48.
[8] Yin J C, Li G X, Ren X, et al. Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Biotechnol, 2007, 127(3): 335-347.
[9] Leichert L I, Jakob U. Protein thiolmodifications visualized in vivo. PLoS Biol, 2004, 2(11): e333.
[10] Das A. Overproduction of proteins in Escherichia coli: vector, host and strategies. Methods Enzymol, 1990, 182: 93-112.
[11] Yeo Y J, Shin S, Lee S G,et al. Production, purification, and characterization of soluble NADH-flavin Oxidoreductase (StyB) from Pseudomonas putida SN1. Microbiol Biotechnol, 2009, 19(4):362-367.
[12] Yu H, Ma Q, Lin J, et al. Expression and purification of GST-FHL2 fusion protein. Genet Mol Res, 2013, 12(4): 6372-6378.
[13] Goulding C W, Perry L J. Protein production in Escherichia coli for structural studies by X-ray crystallography. Struct Biol, 2003, 142(1):133-143.
[14] Qing G, Ma L C, Khorchid A, et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol, 2004, 22(7): 877-882.
[15] Chen H Y, Bjerknes R, Kumar R, et al. Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acid Res, 1994, 22(23):4953-4957.
[16] Corisdeo S, Wang B. Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Protein Expression and Purification, 2004, 34(2): 270-279.
[17] Savva C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews, 1996, 60(3):512-538.
[18] Humphreys D P, Carrington B, Bowering L C, et al. A plasmid system for optimization of Fab production in Escherichia coli: importance of balance of heavy chain and light chain synthesis. Protein Expression and Purification, 2002, 26(2): 309-320.
[19] Nagano R, Masuda K. Establishment of a signal peptide with cross-species compatibility for functional antibody expression in both Escherichia coli and Chinese hamster ovary cells. Biochemical and Biophysical Research Communications, 2014, 447(4): 655-659.
[20] Carpousis A J. The RNA degradosome of Escherichia coli: AnmRNA-degrading machine assembled on RNase E. Annu Rev Microbiol, 2007, 61: 71-87.
[21] Ali M, Suzuki H, Fukuba T, et al. Improvements in the Cell-Free Production of Functional Antibodies sing Cell Extract from Protease-Deficient Escherichia coli Mutant. J Biosci Bioeng, 2005, 99(2): 181-186.
[22] Cruz-Vera L R, Magos-Castro M A, Zamora-Romo E, et al. Ribosome stalling and peptidyl-tRNA drop-off during translational delay at AGA codons. Nucleic Acids Res, 2004, 32(15): 4462-4468.
[23] Mira D, Drazen R, Gordana S, et al. Successful production of recombinant buckwheat cysteine-rich aspartic protease in Escherichia coli. Serb Chem Soc, 2009, 74(6): 607-618.
[24] Bessette P H, Aslund F, Beckwith J, et al. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A., 1999, 96(24): 13703-13708.
[25] Chen Y, Song J, Sui S F, et al. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expr Purif, 2003, 32(2): 221-231.
[26] Nesbeth D N, Perez-Pardo M A, Ali S, et al. Growth and Productivity Impacts of Periplasmic Nuclease Expression in an Escherichia coli Fab' Fragment Production Strain. Biotechnol Bioeng, 2012, 109(2): 517-527.
[27] Ostermeier M, De Sutter K, Georgiou G, et al. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutant and increase the yield of a heterologous secreted protein with disulfide bonds. Boil Chem, 1996, 271: 10616-10622.
[28] Humphreys D P, Weir N, Lawson A, et al. Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab' fragment expressed in Escherichia coli. Federation of European Biochemical Societies, 1996, 380(2):194-197.
[29] Reilly D E, Yansura D G. Production of monoclonal antibodies in E.coli. Springer:AAPS, New York, 2010, 295-308.
[30] Hartl F U, Hayer-Hartl M. Protein folding-Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 2002, 295(5561): 1852-1858.
[31] Sahu S K, Rajasekharan A, Gummadi S N, et al. GroES and GroEL are essential chaperones for refolding of recombinant human phospholipid scramblase 1 in E. coli. Biotechnol Lett, 2009, 31(11): 1745-1752.
[32] Park S L, Kwon M J, Kim S K, et al. GroEL/ES chaperone and low culture temperature synergistically enhanced the soluble expression of CGTase in E. coli. Microbiol Biotechnol, 2004, 14(1): 216-219.
[33] Huang K, Ghose R, Flanagan J M, et al. Backbone dynamics of the N-terminal domain in E. coli DnaJ determined by 15N- and 13CO-relaxation measurements. Biol Chem, 1999, 38(32): 10567-10577.
[34] Levy R, Ahluwalia K, Bohmann D J, et al. Enhancement of antibody fragment secretion into the Escherichia coli periplasm by co-expression with the peptidyl prolyl isomerase, FkpA, in the cytoplasm. Journal of Immunological Methods, 2013, 394(2): 10-21.
[35] Subedi G P, Satoh T, Hanashima S, et al. Overproduction of anti-Tn antibody MLS128 single-chain Fv fragment in Escherichia coli cytoplasm using a novel pCold-PDI vector. Protein Expression and Purification, 2012, 82(1): 197-204.
[36] Velmurugan N, Kim H S, Jeong K J, et al. Enhanced production of human FccRIIa receptor by high cell density cultivation of Escherichia coli. Protein Expression and Purification, 2011, 79(1): 60-65.
[37] Kotik M, Kocanová M, Maresová H, et al. High-level expression of a fungal pyranose oxidase in high cell-density fed-batch cultivations of Escherichia coli using lactose as inducer. Protein Expression and Purification, 2004, 36(1): 61-69.
[38] Zou C, Duan X, Wu J. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Bioresource Technology, 2014, 172: 174-179.
[39] Zhang H C, Yang J, Yang G W, et al. Production of recombinant protein G through high-density fermentation of engineered bacteria as well as purification. Mol Med Rep, 2015, 12(2): 3132-3138.
[40] Yang J, Pan X, Wang H, et al. A study of high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria. Int J Clin Exp Med, 2015, 8(1): 173-180.
[41] Faust G, Janzen N H, Bendig C, et al. Feeding strategies enhance high cell density cultivation and protein expression in milliliter scale bioreactors. Biotechnology, 2014,9(10): 1293-1303.
[42] Volontè F, Marinelli F, Gastaldo L, et al. Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E.coli. Protein Expr Purif, 2008, 61(2): 131-137.
[43] Piserchio A, Ghose R, Cowburn D. Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies. J Biomol NMR, 2009, 44(2): 87-93.
[44] Turner P, Holst O, Karlsson E N. Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expr Purif, 2005, 39(1): 54-60.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[4] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[5] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[6] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[7] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[8] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[9] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[10] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[11] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[12] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[13] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[14] 许敏华,张晶晶,金小宝,李小波,王艳,马艳. 美洲大蠊内生菌几丁质酶基因的克隆、表达及其活性研究 *[J]. 中国生物工程杂志, 2019, 39(1): 31-37.
[15] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.