Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (06): 113-119    
综述     
乳酸菌基因芯片应用研究进展
包秋华1|孙志宏1|乌日娜1|孟和2|张和平1
1. 内蒙古农业大学乳品生物技术与工程教育部重点实验室
2. 上海交通大学农业与生物学院
Applications Progress of DNA Microarray in Lactic Acid Bacteria
 全文: PDF(484 KB)   HTML
摘要: 基因芯片技术是上世纪90年代兴起的一种对成百上千甚至上万个基因同时进行检测的新技术,具有高通量、并行化的特点,广泛应用于基因表达谱测定、基因功能预测、基因突变检测和多态性分析等方面。多种乳酸菌基因组全序列以及其大量EST、16S rDNA、16S-23S基因间区和功能基因序列测定的完成,有力地推动了基因芯片技术在乳酸菌研究中的应用。介绍了基因芯片的基本原理及乳酸菌基因芯片在基因表达、种属鉴定等研究中的应用进展,以期更好地利用和开发乳酸菌基因芯片。
关键词: 乳酸菌;基因芯片;基因表达;种属鉴定    
Abstract:

DNA microarray technology emerged since 1990s allows a parallel analysis for thousands of genes in a single experiment. With the many strain's whole genome sequenceing, DNA microarray technology as a primary high-throughput tool has been widely applicated in monitoring of gene expression patterns, such as gene function prediction, detection of gene mutations, polymorphism analysis and so on. More attention has been taken on the application of gene chip technology in the research of Lactic Acid Bacteria(LAB), as for several LAB strains genome sequencing completed and a lots of sequences of EST, 16S/16S-23S rDNA obtained. The basic principle of the gene chip and the application progress of DNA microarray in identification and expression analysis of LAB were introduced in this paper, which would provide reference for further application and exploitation of LAB DNA microarray.

收稿日期: 2009-01-04 出版日期: 2009-07-02
ZTFLH:  Q819  
通讯作者: 孟和     E-mail: hepingZhang@imau.deu.cn,menghe@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
包秋华
孙志宏
乌日娜
孟和
张和平

引用本文:

包秋华1,孙志宏1,乌日娜1,孟和2,张和平1. 乳酸菌基因芯片应用研究进展[J]. 中国生物工程杂志, 2009, 29(06): 113-119.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I06/113

[1] Kricka L J. Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clin Chim Acta, 2001, 307(12): 219~223 [2] Xie Y, Chou L S, Cutler A,et al. DNA Macroarray profiling of Lactococcus lactis subsp.lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol, 2004, 70(11): 6738~6747 [3] Lemieux B, Aharoni A, Schena M. Overview of DNA chi Ptechnology. Molecular Breeding, 1998, 4: 277~289 [4] Kane M D, Jatkoe T A, Stumpf C R, et al. Assessment of the sensitivity and specificity of oligonucleotide(50mer) microarrays. Nucleic Acids Res, 2000, 28: 4552~4557 [5] Wang Quan, Wang Min, Kong Fanrong, et al. Development of a DNA microarray to identify the Streptococcus pneumoniae serotypes contained in the 23valent pneumococcal polysaccharide vaccine and closely related serotypes. J Microbiol Methods, 2007, 68: 128~136 [6] Whitehead K, Versalovic J, Roos S,et al. Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol, 2008, 5:1812~1819 [7] 李瑶. 基因芯片与功能基因组. 北京: 化学工业出版社, 2004. 28~49 Li Y. Genchi Pand Functional Genomics. Biejing. Chemical Industry Press,2004. 28~49 [8] Hughes T R, Mao M, Jones A R, et al. Expression profiling using microarrays fabricated by an inkjet oligonucleotide synthesizer. Nat Biotechnol, 2001, 19: 342~347 [9] Wang R F, Beggs M L, Erickson B D,et al. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes, 2004,18: 223~234 [10] 李瑶. 基因芯片技术——解码生命. 北京: 化学工业出版社,2004.54~58 Li Y. Gene Chip Technology. Beijing:Chemical Industry Press,2004. 54~58 [11] Pieterse B, Leer R J,Schuren F H J,et al. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology, 2005,151: 3881~3894 [12] Barrangou R, AzcaratePeril M A, Duong T,et al. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci, USA, 2006, 103(10): 3816~3821 [13] Sturme M H, Nakayama J, Molenaar D, et al. An agrlike twocomponent regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacterial, 2005, 187: 5224~5235 [14] Saulnier D M A, Molenaar D, De Vos W M, et al. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays, Appl Environ Microbiol, 2007, 73: 1753~1765 [15] Begley M, Gahan C G, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev,2005, 29: 625~651 [16] Bron PA, Molenaar D, De Vos W M, et al. DNA microarraybased identification of bileresponsive genes in Lactobacillus plantarum. J Appl Microbiol, 2006, 100: 728~738 [17] 乌日娜,武俊瑞,孟和,等.乳酸菌酸胁迫反应机制研究进展.微生物学杂志,2007,27(2): 62~67 Wu R N , Wu J R, Meng H , et al.Journal of Microbiology.2007, 27(2): 62~67 [18] Pfeiler E A, AzcaratePeril M A, Klaenhammer T R. et al. Characterization of a novel bileinducible operon encoding a twocomponent regulatory system in Lactobacillus acidophilus. J Bacteriol, 2007, 189: 4624~4634 [19] Chaussee M S, Sylva G L, Sturdevant D E,et al. Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect Immun, 2002, 70: 762~ 770 [20] AzcaratePeril M A, McAuliffe O, Altermann E, et al. Microarray analysis of a twocomponent regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol, 2005, 71(10): 5794~5804 [21] Vlieg J V H, Felis G, Wels M, et al. Exploring genomic diversity of Lactococcus lactis by comparative genome hybridisation with multistrain DNA microarrays. J Bacterial, 2007, 131(2):1~2 [22] Molenaar D,Bringel F,Schuren F H,et al. Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol, 2005, 187: 6119~6127 [23] Goldmann O, von KockritzBlickwede M, Holtje C.et al. Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun, 2007, 75: 4148~4157 [24] Chizhikov V, Rasooly A, Chumakov K,et al. Microarray analysis of microbial virulence factors. Appl Environ Microbiol, 2001, 67(7): 3258~3263 [25] Duplessis M,Russell W M,Romero D A.et al. Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray. Virology, 2005,340: 192~208 [26] Davignon L,Walter E A, Mueller K M,et al.Use of resequencing oligonucleotide microarrays for identification of Streptococcus pyogenes and associated antibiotic resistance determinants.J Clin Microbiol, 2005,43(11): 5690~5695 [27] 张和平,张七斤,任贵强,等.乳酸杆菌对攻毒小鼠的保护作用和对肠道菌群的影响.微生物学通报, 2007,3(34):447~450 Zhang H P, Zhang Q J, Ren G Q. et al. The antagonism of Lactobacillus casei Zhang to pathogenic Escherichia coli in mice and the influence on the microbial population in gut.Microbiology,2007,3(34):447~450 [28] Lehner A, Loy A, Behr T, et al. Oligonucleotide microarray for identification of Enterococcus species. FEMS Microbiology Letters,2005,246:133~142 [29] Wang R F, Beggs M L, Robertson L H,et al. Design and evaluation of oligonucleotidemicroarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiology Letters,2002 ,213: 175~182 [30] Stina B Roth, Jari Jalava, Olli Ruuskanen,et al. Use of an oligonucleotide array for laboratory diagnosis of bacteria responsible for acute upper respiratory infections. J Clin Microbiol, 2004,42(9): 4268~4274 [31] Lemarchand K, Berthiaume F, Maynard C,et al. Optimization of microbial DNA extraction and purification from raw wastewater samples for downstream pathogen detection by microarrays. J Microbiol Methods, 2005,63(2): 115~126 [32] Avarre J C, de Lajudie P, Béna G. Hybridization of genomic DNA to microarrays: A challenge for the analysis of environmental samples. J Microbiol Methods, 2007,69:242~248 [33] Palmer C, Bik E M, DiGiulio D B. et al. Development of the human infant Intestinal microbiota. PLoS Biol,2007,5(7):E177 [34] Kuipers O P. Genomics for food biotechnology: prospects of the use of highthroughput technologies for the improvement of food microorganisms. Curr Opin Biotechnol, 1999,10: 511~516 [35] Bae J W, Rhee S K, Park J R,et al. Development and evaluation of genomeprobing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol, 2005,71(42): 8825~8835
[1] 吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.
[2] 王洪苏, 关桂静, 刘金香. Alexa Fluor荧光标记在细胞学和分子生物学研究中的应用[J]. 中国生物工程杂志, 2015, 35(9): 71-77.
[3] 周立军, 刘文娟, 祁永浩, 李妙. SOCS3通过JNK和STAT3信号通路调控AKT[J]. 中国生物工程杂志, 2015, 35(9): 50-56.
[4] 梁高峰, 何向峰, 陈宝安. miRNA在肿瘤分子诊断和治疗中的研究进展[J]. 中国生物工程杂志, 2015, 35(9): 57-65.
[5] 尉研, 王焕琴, 吴萌, 张凤娟, 梁国栋, 朱武洋. 黄病毒检测工程细胞系的构建及功能鉴定[J]. 中国生物工程杂志, 2015, 35(9): 35-41.
[6] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.
[7] 康学军, 杨怡姝. HIV-1潜伏感染体外实验模型研究进展[J]. 中国生物工程杂志, 2015, 35(8): 96-102.
[8] 李洪昌, 袁林, 张令强. 抑癌基因PTEN转基因小鼠的构建及表型初步分析[J]. 中国生物工程杂志, 2015, 35(8): 1-8.
[9] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[10] 朱志坚, 连凯琪, 杨帆, 张伟, 郑海学, 杨孝朴. 稳定表达鼠源整联蛋白αvβ6的CHO-677细胞系的构建[J]. 中国生物工程杂志, 2015, 35(8): 23-29.
[11] 黄鹏, 李文姝, 谢君, 鲍建瑛, 曹晓娥, 余龙, 徐一新. 人源类溶菌酶蛋白6在毕赤酵母中的重组表达及活性分析[J]. 中国生物工程杂志, 2015, 35(8): 30-37.
[12] 任琴, 郭志鸿, 王亚军, 谢忠奎, 王若愚. RNA干扰及其在增强作物抵抗有害真核生物研究中的应用[J]. 中国生物工程杂志, 2015, 35(6): 80-89.
[13] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[14] 贾翠丽, 张华伟, 王斌斌, 朱宏吉, 乔建军. 革兰氏阳性菌自然感受态生理机制的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 90-100.
[15] 李佳鑫, 冯炜, 王志钢, 王彦凤. CRISPR/Cas9技术及其在转基因动物中的应用[J]. 中国生物工程杂志, 2015, 35(6): 109-115.