Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (10): 60-65    
综述     
人Toll样受体靶向药物研究进展
邢雅玲, 任乐宁, 陈晓娟, 陈忠斌
军事医学科学院放射与辐射医学研究所 北京 100850
Development of Potential Therapeutics Targeting to Human Toll-like Receptor
XING Ya-ling, REN Le-ning, CHEN Xiao-juan, CHEN Zhong-bin
Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
 全文: PDF(589 KB)   HTML
摘要:

Toll样受体(TLR)是一类模式识别受体,通过多种信号传递改善免疫系统功能,活化NF-κB信号通路,调节TNF-α、ILs和IFN-α等多种细胞因子分泌,在天然免疫系统中发挥重要作用,在免疫学及药物研究领域受到广泛关注。TLR种类众多,配体广泛,可以作为治疗微生物感染、炎症、自身免疫性疾病、 肿瘤及放射损伤等疾病的药物靶点,是免疫治疗的重要切入点。研究人员已经对数十种TLR靶向药物进行了研究。对TLR结构特征、信号传递以及靶向药物的特点和研究现状进行综述,分析其在免疫治疗方面的优劣势,也为下一步药物研究提供一定的理论依据。

关键词: Toll样受体抗肿瘤药物抗病毒药物抗辐射损伤药物免疫治疗    
Abstract:

Innate immune initiates at recognition of broad classes of conserved microbial molecular structures known as pathogen-associated molecular patterns (PAMPs) by a diverse set of germ line-encoded receptors, termed pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). TLRs are one of the largest and best studied families of PRR. TLRs activate innate immunity pathway, regulate the secretion of cytokines such as TNF-α, ILs and IFN-α, and ultimately modulate the function of immunity system. Over ten TLRs have been discovered in human genome that may be the therapy targets for cancer, viral and bacterial infection, inflammation, autoimmunity and radiation injury. Several compounds targeting TLRs are now undergoing preclinical or clinical evaluation, including anti-tumor drugs, anti-virus drugs, anti-infection drugs and anti-radiation drugs. The structural feature of TLRs, the characteristics of their signaling pathways, and the development status of related compounds for therapeutic manipulation were summarized.

Key words: Toll-like receptor    Anti-tumor drug    Anti-virus drug    Anti-radiation drug    Immunotherapy
收稿日期: 2010-06-10 出版日期: 2010-10-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(30972761, 30870536)、国家科技重大专项(2008ZX10004-015)、北京市自然科学基金项目(7092075)、第36批教育部留学回国人员科研启动基金资助项目

通讯作者: 陈忠斌     E-mail: chenzhongbin@yahoo.com;chenzb@bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邢雅玲
任乐宁
陈晓娟
陈忠斌

引用本文:

邢雅玲, 任乐宁, 陈晓娟, 陈忠斌. 人Toll样受体靶向药物研究进展[J]. 中国生物工程杂志, 2010, 30(10): 60-65.

XING Ya-ling, REN Le-ning, CHEN Xiao-juan, CHEN Zhong-bin. Development of Potential Therapeutics Targeting to Human Toll-like Receptor. China Biotechnology, 2010, 30(10): 60-65.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I10/60


[1] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 2010, 11(5): 373-384.

[2] Hennessy E J, Parker A E, O’Neill L A. Targeting Toll-like receptors: emerging therapeutics? Drug Discovery, 2010, 9(4): 293-306.

[3] Lin L, Botos I, Wang Y, et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science, 2008, 320(5874): 379-382.

[4] Choe J, Kelker S M, Wilson A I. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science, 2005, 309(5374): 581-586.

[5] Shigeoka A A, Holscher T D, King A J, et al. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J Immunol, 2007, 178 (10): 6252-6258.

[6] Yamamoto M, Sato S, Hemmi H, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol, 2003, 4 (11): 1144-1150.

[7] Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRA Pin activation of the signalling cascade shared by TLR2 and TLR4. Nature, 2002, 420 (6913): 324-329.

[8] Hemmi H, Kaisho T, Takeuchi O, et al. Small anti-viral compounds activate immune cells via the TLR7 Myd88-dependent signaling pathway. Nat Immunol, 2002, 3(2): 196-200.

[9] Dummer R, Hauschild A, Becker J C, et al. An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin Cancer Res, 2008, 14(3): 856-864.

[10] Panter G, Kuznik A, Jerala R. Therapeutic applications of nucleic acids as ligands for Toll-like receptors. Curr Opin Mol Ther, 2009, 11(2), 133-145.

[11] Agrawal S, Kandimalla E R. Synthetic agonists of Toll-like receptors 7, 8 and 9. Biochem Soc Trans, 2007, 35(Pt6): 1461-1467.

[12] Kochling J, Prada J, Bahrami M, et al. Anti-tumor effect of DNA-based vaccination and dSLIM immunomodulatory molecules in mice with Ph+ acute lymphoblastic leukaemia. Vaccine, 2008, 26(36): 4669-4675.

[13] Chin A I, Miyahira A K, Covarrubias A, et al.Toll-like receptor 3-mediated suppression of TRAM Pprostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res, 2010, 70(7): 2595-2603.

[14] Garay R P, Viens P, Bauer J, et al. Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur J Pharmacol, 2007, 563(1-3): 1-17.

[15] Simons M P, O’Donnell M A, Griffith T S. Role of neutrophils in BCG immunotherapy for bladder cancer. Urol Oncol, 2008, 26(4): 341-345.

[16] Parkinson T. The future of toll-like receptor therapeutics. Curr Opin Mol Ther, 2008, 10(1): 21-31.

[17] Kronenberger B, Zeuzem S. Current and future treatment options for HCV. Ann Hepatol, 2009, 8(2): 103-112.

[18] Casella C R, Mitchell T C. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci, 2008, 65(20): 3231-3340.

[19] Nardo D, Nardo C M, Nguyen T, et al. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages. J Immunol, 2009, 183(12): 8110-8118.

[20] Klouwenberg K P, Tan L, Werkman W, et al. The role of Toll-like receptors in regulating the immune response against respiratory syncytial virus. Crit Rev Immunol, 2009, 29(6): 531-550.

[21] Kanzler H, Barrat F J, Hessel E M, et al. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nature Med, 2007, 13(5): 552-559.

[22] Ramaprakash H, Hogaboam C M. Intranasal CpG therapy attenuated experimental fungal asthma in a TLR9-dependent and -independent manner. Int Arch Allergy Immunol, 2010, 152(2): 98-112.

[23] Rosewich M P. Ultra-short course immunotherapy in children and adolescents during a 3-yrs post-marketing surveillance study. Pediatr Allergy Immunol, 2010, 21: e185-e189.

[24] Gowen B B, Wong M H, Jung K H. Tlr3 is essential for the induction of protective immunity against Punta Toro virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not poly(I:C): Differential recognition of synthetic dsRNA molecules. J Immunol, 2007, 282(8): 11817-11826.

[25] Lu Z W. Potential therapeutic interventions on toll like receptors for clinical applications. Research in Pharmaceutical Biotechnology, 2010, 2(1): 7-13.

[26] Wasan K M, Risovic V, Sivak O, et al. Influence of plasma cholesterol and triglyceride concentrations and eritoran (E5564) micelle size on its plasma pharmacokinetics and ex vivo activity following single intravenous bolus dose into healthy female rabbits. Pharm Res, 2008, 25(1): 176-182.

[27] Chang Y C, Kao W C, Wang W Y, et al. Identification and characterization of oligonucleotides that inhibit Toll-like receptor2-associated immune responses. FASEB J, 2009, 23(9): 3078-3088.

[28] Burdelya L G, Krivokrysenko V I, Tallant T C, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science, 2008, 320(5873): 226-230.

[29] Sfondrini L, Rossini A, Besusso D, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol, 2006, 176(11): 6624-6630.

[30] Medzhitov R, Janeway C Jr. The Toll receptor family and microbial recognition. Trends Microbiol, 2000, 8(10): 452-456.

[31] Huleatt J W, Nakaar V, Desai P, et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine, 2008, 26(2): 201-214.

[32] Sheedy F J, O’Neill L A. Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann Rheum Dis, 2008, 67 (Suppl. 3): 50-55.

[33] Koziczak-Holbro M, Littlewood-Evans A, Pllinger B, et al. The critical role of kinase activity of interleukin-1 receptor-associated kinase 4 in animal models of joint inflammation. Arthritis Rheum, 2009, 60(6): 1661-1671.

[34] Kawagoe T, Sato S, Matsushita K, et al. Sequential control of Toll-like receptordependent responses by IRAK1 and IRAK2. Nature Immunol, 2008, 9(6): 684-691.

[35] Tsung A, McCoy S L, Klune J R, et al. A novel inhibitory peptide of Toll-like receptor signaling limits lipopolysaccharide-induced production of inflammatory mediators and enhances survival in mice. Shock, 2007, 27(4): 364-369.

[1] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[2] 吕海银,王腾飞,裴仁军. 基于核酸适配体的肿瘤免疫治疗进展 *[J]. 中国生物工程杂志, 2019, 39(6): 55-61.
[3] 杨琳,李勇超,张腾华,邓乙晓,杨锦,高志博. 肿瘤精准免疫诊断综合评估[J]. 中国生物工程杂志, 2019, 39(2): 62-73.
[4] 冯雪娇,黄勇,程平生,喻琼. 抗乙肝病毒药物市场分析 *[J]. 中国生物工程杂志, 2019, 39(1): 90-98.
[5] 李思,翟逸舟,陆玉婷,王富军,赵健. 一种用于肿瘤药物治疗的新型人源性穿膜肽的优化及其应用 *[J]. 中国生物工程杂志, 2018, 38(7): 40-49.
[6] 李敏, 吴日伟. 抗肿瘤药物市场概述[J]. 中国生物工程杂志, 2017, 37(4): 125-133.
[7] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[8] 余琳,王建华,葛良鹏. 靶向Glypican-3的肝癌免疫治疗研究进展*[J]. 中国生物工程杂志, 2017, 37(12): 90-95.
[9] 卢姗, 李苏宁, 范红. 肿瘤免疫治疗技术与产品开发的现状与发展建议[J]. 中国生物工程杂志, 2017, 37(1): 104-110.
[10] 何小兵, 贾怀杰, 景志忠. Toll样受体对病原真菌的天然免疫识别[J]. 中国生物工程杂志, 2012, 32(12): 86-92.
[11] 尹卫国, 高媛, 梁瑜, 李映菊, 肖建华. 白细胞介素-1受体相关激酶-2的共价修饰与激酶活性的研究[J]. 中国生物工程杂志, 2011, 31(10): 12-17.
[12] 邢雅玲 任乐宁 陈晓娟 陈忠斌. 人Toll样受体靶向药物研究进展[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[13] 高晶, 高雪涛, 段志强, 李文辉. 治疗性疫苗研究进展[J]. 中国生物工程杂志, 2003, 23(2): 83-85.
[14] 曲殿波, 刘传暄, 马清钧. 肿瘤免疫治疗的一种新技术——肽脉冲[J]. 中国生物工程杂志, 1998, 18(4): 58-63.
[15] 冯建民, 王宾. DNA疫苗研究现状和展望[J]. 中国生物工程杂志, 1997, 17(6): 48-50.