Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (04): 67-72    
研究报告     
营养及水力条件影响光合细菌生物膜生长特性实验
田鑫1,廖强1,党楠2,朱恂1,王永忠3
1. 重庆大学工程热物理研究所
2.
3. 重庆大学动力工程学院工程热物理研究所
Effect of Nutrient and Hydrodynamic Conditions on Growth Characteristics of Photosynthetic Bacterial Biofilm
 全文: PDF(850 KB)   HTML
摘要: 对平板式生物膜反应器内,流量及底物浓度范围分别为37.8~1080ml/h、0.05~10g/L的不同生长条件下光合产氢细菌生物膜生长特性进行了实验研究,讨论了不同水力及营养条件对沼泽红假单胞菌生物膜表面覆盖率、膜厚、干重和密度的影响。实验结果表明,不同水力及营养条件对生物膜生长速率及结构具有重要影响。在相同的时间间隔内,在高流速条件下光合细菌菌落生长较快,但过高的液体流速会导致部分生物膜脱落;高流速条件易使生物膜形成薄而致密的结构。光合细菌生物膜在循环液底物浓度较高时生长较快,密度也最高;而贫营养条件可以促成结构疏松生物膜在固液界面的形成,这种生物膜结构有利于微生物在低底物浓度条件下底物在生物膜内的传输。
关键词: 光合细菌;生物膜;可视化;膜厚;底物传输    
Abstract: The growth characteristics of hydrogen-production photosynthetic bacterial biofilm in a plate-type biofilm bioreactor were studied experimentally. The effect of hydraulic and nutritional conditions on the surface coverage, thickness, dry weight, and density of Rhodoseudomonas palustris biofilm was observed, respectively. Glucose in the influent concentration range from 0.05 to 10 g/L was used as the sole carbon source. Liquid flow rate was varied from 37.8 to 1080ml/h in the experiments. Experimental results showed that the hydraulic and nutritional conditions had significant influences on the growth rate and structure of biofilm. In a lower flow rate range, high liquid flow rate was propitious to the diffusion of substrate from liquid phase to solidliquid interface, which resulted in the fast development of biofilm on the solidliquid interface. However, some parts of biofilm were scraped off when the flow rate exceeded a threshold. At a fixed liquid flow rate, the biofilm density increased with the increase in the substrate concentration. The biofilm having thick and loose structure was developed under low substrate concentration condition. The biofilm structure was convenient for the nutrient transfer in the biofilm, which is a survival strategy of microorganisms facing adverse circumstances.
Key words: Photosynthetic bacteria;Biofilm;Visualization;Biofilm thickness;Substrate transfer
收稿日期: 2008-09-16 出版日期: 2009-04-27
ZTFLH:  Q938.1 X703.1  
基金资助: 国家自然科学基金(90510020,50576107)、教育部新世纪优秀人才支持计划 (NCET-04-0845)、重庆市自然科学基金(2006BB7225)资助项目
通讯作者: 廖强   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田鑫
廖强
党楠
朱恂
王永忠

引用本文:

田鑫,廖强,党楠,朱恂,王永忠. 营养及水力条件影响光合细菌生物膜生长特性实验[J]. 中国生物工程杂志, 2009, 29(04): 67-72.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I04/67

[1] 杨平,潘永亮,何力. 废水生物处理中生物膜的形成及动力学模型研究进展.环境科学研究,2000,3(5): 50~53 Yang P, Pan Y L, He L. Research of Environmental Sciences, 2000,3(5): 50~53 [2] Tommaso G, Varesche M B. Morphological observation and microbial population dynamics in anaerobic polyurethane foam biofilm degrading gelatin. Brazilian Journal of Chemical Engineering, 2002, 19(3):287~292 [3] 廖强, 王永忠, 朱恂, 等. 初始底物浓度对序批式培养光合细菌产氢动力学影响. 中国生物工程杂志, 2007,27(11):51~56 Liao Q, Wang Y Z, Zhu X, et al. China Biotechnology, 2007, 27(11):51~56 [4] Kotay S M, Das D. Biohydrogen as a renewable energy resource——Prospect and potentials. International Journal of Hydrogen Energy. 2008, 33: 258~263 [5] 杨素萍, 赵春贵, 曲音波, 等. 生物产氢研究与进展. 中国生物工程杂志, 2008, 22(44):44~48 Yang S P, Zhao C G, Qu Y B, et al. China Biotechnology, 2004,24(4):44~48 [6] 刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.北京:中国建筑工业出版社,2000.12~13,28~31 Liu Y, Zhao Q L, Zheng X C. Biofilm Sewage Disposal Technology. Beijing: China Architecture & Building Press, 2000.12~13 [7] Ebrahimi S, Picioreanu C, Xavier J B. Biofilm growth pattern in honeycomb monolith packings:Effect of shear rate and substrate transport limitations. Catalysis Today, 2005, 105: 448~454 [8] Rinaudi L, Fujishige N A, Hirsch A M, et al. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Research in Microbiology, 2006, 157: 867~875 [9] HallStoodley L, LappinScott H. Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiology Letters, 1998, 168:77~84 [10] Pereira M O, Morin P, Viera M J. A versatile reactor for continuous monitoring of biofilm properties in laboratory and industrial conditions. Letters in Applied Microbiology, 2002, 34: 22~26 [11] Liu Y. Estimating minimum fixed biomass concentration and active thickness of nitrifying biofilm. Journal of Environmental Engineering, 1997, 123: 198~202 [12] Roosjen A, Boks N P. Influence of shear on microbial adhesion to PEObrushes and glass by convectivediffusion and sedimentation in a parallel plate flow chamber. Colloids and Surfaces B: Biointerfaces, 2005, 46: 1~6 [13] Mueller R F. Bacterial transport and colonization in low nutrient environments. Water Research, 1996, 30(11): 2681~2690 [14] Helle H, Vuoriranta P. Monitoring of biofilm growth with thicknessshear mode quartz resonators in different flow and nutrition conditions. Sensors and Actuators B, 2000, 71: 47~54 [15] Wong HinChung, Chung YuChun, Yu JuiAn. Attachment and inactivation of Vibrio Parahaemolyticus on stainless steel and glass surface. Food Microbiology, 2002, 19: 341~350 [16] Poulsen L V. Microbial biofilm in food processing. Lebensm.Wiss. u.Technol, 1999, 32: 321~326
No related articles found!