Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (8): 1-8    DOI: 10.13523/j.cb.20150801
研究报告     
抑癌基因PTEN转基因小鼠的构建及表型初步分析
李洪昌, 袁林, 张令强
军事医学科学院放射与辐射医学研究所 北京蛋白质组研究中心 蛋白质组学国家重点实验室 北京 100850
Construction of Transgenic Mice and Phenotypic Analysis of Tumor Suppressor PTEN
LI Hong-chang, YUAN Lin, ZHANG Ling-qiang
State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
 全文: PDF(1542 KB)   HTML
摘要:

目的:构建抑癌基因PTEN(phosphatase and tensin homolog deleted on chromosome ten)的转基因小鼠模型并对其表型进行初步分析。方法:细菌人工染色体(BAC)载体系统构建打靶载体创建PTEN转基因小鼠模型;利用对鼠尾DNA进行PCR检测的方法对出生的F0代小鼠进行基因型鉴定,将阳性F0代小鼠与野生型小鼠交配繁殖筛选稳定遗传的转基因系。分离并培养小鼠胚胎成纤维细胞(mouse embryo fibroblast,MEF),利用Western blotting检测比较转基因阳性小鼠与同窝野生型小鼠MEF细胞中PTEN的蛋白表达水平,并通过克隆形成实验对比PTEN转基因小鼠与野生型小鼠MEF细胞的增殖能力;取成年小鼠主要组织器官提取蛋白,Western blotting检测PTEN转基因小鼠主要组织的PTEN蛋白表达情况;从小鼠出生后第三周开始统计、分析并制作小鼠的体重生长曲线;此外,还对比了PTEN转基因小鼠与野生型小鼠肺、肝、脾脏的细胞大小与腹腔内的脂肪含量。结论:PTEN转基因小鼠能够存活并稳定遗传;Western blotting结果表明,不论在胚胎期还是成年期,PTEN转基因小鼠体内的PTEN蛋白水平均高于同窝的野生型小鼠,转基因小鼠的PTEN表达水平接近野生型水平的3倍;对PTEN转基因小鼠的整体表型进行初步分析,发现Pten基因在体内过表达后,小鼠的体型显著变小,而细胞大小不变;腹腔内的脂肪含量显著减少。结论:成功构建了PTEN转基因小鼠模型,并获得了生理条件下PTEN过表达的原代细胞系,为研究抑癌基因PTEN的体内生理功能提供了重要的动物模型。

关键词: 肿瘤小鼠转基因技术PTEN抑癌基因    
Abstract:

Objective: To establish transgenic mouse model of PTEN (phosphatase and tensin homolog does on chromosome ten), one of the most studied tumor suppressor genes in cancer field, and preliminarily analyze the phenotype of PTEN transgenic mouse model. Methods: The targeting vector of PTEN transgenic mouse model was designed through bacterial artificial chromosome (BAC) carrier system, which can protect the inserted genes from position effect and ensure high expression of the inserted gene. PCR was used to identify the genotype of F0 mice and offspring. Positive transgenic mice in F0 generation were crossed with wild type mice respectively to screen the stable transgenic mice line. At the same time. PTEN protein expression level was detected both in the embryonic and adult mice respectively, embryonic fibroblasts (mouse embryo fibroblast, MEF) from PTEN transgenic mice and the wild type littermates were used to be detected and evaluated PTEN protein levels by Western blotting, and clone-formation assay was used to determine the MEF proliferation ability. Adult mice tissues of the high expression line were used to be a verification. Once confirmed PTEN was really over expression in the transgenic mice, weight of mice from the high expression transgenic line were recorded and analyzed from 3 to 12 weeks. In addition, the cell size of liver, spleen and lung and abdominal fat were compared between PTEN transgenic and wile type MEFs. Results: PTEN transgenic mouse model was successfully constructed by taking advantage of BAC carrier system, genotyping the offspring of PTEN transgenic mice showed it can breed normally. Western blotting showed that PTEN expression levels were significantly higher in transgenic mice than in wild type ones, PTEN protein levels in embryonic fibroblasts cells (MEF) from transgenic mice were as 3 folds as that from the wild type littermates, PTEN protein levels were also significantly higher in transgenic mice tissues than that in wild type ones. Moreover, the body size of PTEN transgenic mice is obviously smaller in the body size than that of wild type ones and intra-abdominal adipose content is significantly reduced. However, after comparing the cell size in liver, spleen and lung between transgenic mice and wile type mice, results showed that cells exhibit a same size. Conclusion: By using BAC strategy,PTEN transgenic mouse model was successfully established. Through isolating MEFs and evaluating PTEN level, cell lines stably overexpressing PTEN were smoothly obtained, which are very important for the study of tumor suppressor gene PTEN in physiological condition.

Key words: Tumor    Mouse    Transgenic technology    PTEN    Tumor suppressor gene
收稿日期: 2015-03-24 出版日期: 2015-08-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金重点项目(31330021)、北京市自然科学基金(5142020)资助项目

通讯作者: 张令强     E-mail: zhanglq@nic.bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李洪昌, 袁林, 张令强. 抑癌基因PTEN转基因小鼠的构建及表型初步分析[J]. 中国生物工程杂志, 2015, 35(8): 1-8.

LI Hong-chang, YUAN Lin, ZHANG Ling-qiang . Construction of Transgenic Mice and Phenotypic Analysis of Tumor Suppressor PTEN. China Biotechnology, 2015, 35(8): 1-8.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150801        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I8/1


[1] Maehama T, Dixon J E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem, 1998, 273(22):13375-13378.

[2] Hamada K, Sasaki T, Koni P A, et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev,2005,19(17): 2054-2065.

[3] Hartmann W, Digon-Söntgerath B, Koch A, et al. Phosphatidylinositol 3-kinase/AKT signaling is activated in medulloblastoma cell prolifer action and is associated with reduced expression of PTEN. Clin Cancer Res,2006,12(10):3019-3027.

[4] Shen Y H, Zhang L, Gan Y, et al. Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem, 2006, 24; 281(12):7727-7736.

[5] Cairns P, Okami K, Halachmi S, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res,1997,57(22):4997-5000.

[6] Feilotter H E, Nagai M A, Boag A H, et al. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene,1998,16(13):1743-1748.

[7] Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997,275(5308):1943-1947.

[8] Risinger J I, Hayes A K, Berchuck A, et al. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res,1997,57(21):4736-4738.

[9] Steck PA, Pershouse M A, Jasser S A, et al. Identification of a candidate tumour suppressor gene, MMAC1 , at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet,1997,15(4):356-362.

[10] Yamada K M, Araki M. Tumor suppressor PTEN: Modulator of cell signaling, growth, migration and apoptosis. J Cell Sci,2001,114(Pt13):2375-2382.

[11] Liaw D, Marsh D J, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome.Nat Genet,1997,16(1):64-67.

[12] Marsh D J, Dahia P L, Zheng Z, et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet,1997,16(4):333-334.

[13] Di Cristofano A, Pesce B, Cordon-Cardo C, et al. Pten is essential for embryonic development and tumour suppression. Nat Genet,1998,19(4):348-355.

[14] Suzuki A, Pompa J L, Stambolic V, et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol,1998,8(21):1169-1178.

[15] Podsypanina K I, Ellenson L H, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA,1999,96(4):1563-1568.

[16] Garcia-Cao I, Song M S, Hobbs R M, et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state.Cell,2012,149(1):49-62.

[17] Johnston L A, Prober D A, Edgar B A, et al. Drosophila myc regulates cellular growth during development.Cell,1999,98(6):779-790.

[18] Trumpp A, Refaeli Y, Oskarsson T, et al. c-Myc regulates mammalian body size by controlling cell number but not cell size.Nature,2001,414(6865):768-773.

[19] Deberardinis R J, Lum J J, Thompson C B. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth.J Biol Chem,2006,281(49):37372-37380.

[20] King A, Gottlieb E. Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr Opin Cell Biol, 2009,21(6):885-893.

[21] Tennant D A, Duran R V, Boulahbel H, et al. Metabolic transformation in cancer. Carcinogenesis,2009,30(8):1269-1280.

[22] Alimonti A, Carracedo A, Clohessy J G, et al. Subtle variations in Pten dose determine cancer susceptibility.Nat Genet,2010,42(5):454-458.

[23] Carracedo A, Alimonti A, Pandolfi P P. PTEN level in tumor suppression: how much is too little.Cancer Res,2011,71(3):629-633.

[24] Trotman L C, Niki M, Dotan Z A, et al. Pten dose dictates cancer progression in the prostate.PLoS Biol,2003,1(3):385-396.

[1] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[2] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[3] 陈玉琼,谭文华,刘海峰,陈根. miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*[J]. 中国生物工程杂志, 2021, 41(5): 8-16.
[4] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[5] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[6] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[7] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[8] 张保惠,熊华龙,张天英,袁权. 基于水疱性口炎病毒(VSV)的溶瘤病毒研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 53-62.
[9] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[10] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[11] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[12] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[13] 何询,张鹏,张俊祥. 类器官的构建与应用进展[J]. 中国生物工程杂志, 2020, 40(12): 82-87.
[14] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[15] 彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.