Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (03): 39-45    
研究报告     
TAT蛋白转导肽介导的秀丽线虫体内外源蛋白的跨膜转导研究
吴永红1, 石锦平1,2, 何国维1, 任长虹1, 高艳1, 张成岗1,2
1. 军事医学科学院放射与辐射医学研究所 蛋白质组学国家重点实验室 北京 100850;
2. 安徽医科大学生物教研室 安徽 230032
TAT Protein Transduction Peptide Mediated Heterologous Proteins Transduction in C.elegans
WU Yong-hong1, SHI Jin-ping1,2, HE Guo-wei1, REN Chang-hong1, GAO Yan1, ZHANG Cheng-gang1,2
1. Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China);
2. Department of Biology, Anhui Medical University, Anhui 230032, China
 全文: PDF(794 KB)   HTML
摘要:

TAT蛋白转导肽是HIV-1病毒编码的一段富含碱性氨基酸序列的多肽,能够高效介导多种外源生物大分子通过多种膜性结构,如细胞质膜和血脑屏障等。为探索TAT蛋白转导肽介导的秀丽线虫体内外源蛋白跨膜转导作用,以EGFP为报告基因结合常规分子克隆技术构建了原核表达载体pET28b-EGFP和pET28-TAT-EGFP,继而利用诱导剂IPTG(终浓度1mmol/L)诱导表达了靶蛋白并结合荧光显微观察、SDS-PAGE和Western blot等鉴定技术获得表达靶蛋白的大肠杆菌BL21(DE3)细胞,最后将其涂布到含有Kana+的LB固体培养基上直接饲喂野生型N2株系线虫,利用荧光显微镜观察绿色荧光信号在线虫体内的分布。结果证明,TAT-EGFP融合蛋白较之于EGFP可高效、可溶性表达,而且通过直接饲喂秀丽线虫表达靶蛋白的大肠杆菌48小时后,TAT-EGFP荧光信号明显分布于线虫肠壁细胞,而EGFP荧光信号则分布在秀丽线虫肠腔,空载体对照组未见任何荧光信号,说明TAT蛋白转导肽能够高效介导外源蛋白在秀丽线虫体内跨膜转导。同时,通过比较空载体对照组与实验组线虫微分干涉图像,未见线虫出现明显的细胞形态变化,说明TAT蛋白转导肽介导的外源蛋白跨膜转导作用是安全的,为在秀丽线虫体内直接研究外源蛋白的功能以及进行蛋白药物的研发提供了重要参考。

关键词: TAT蛋白转导肽原核表达线虫跨膜转导    
Abstract:

The TAT protein transduction peptide was enriched in basic amino acids and encoded by the HIV-1 virus. Previous studies have revealed that it could safely and efficiently mediate various heterologous biological macromolecules across a variety of biomembranes, such as the plasmid membrane and the blood-brain barrier et al. To further study its function in mediating heterologous proteins transduction in nematode in vivo, the prokaryotic expression vector pET28b-EGFP and pET28b-TAT-EGFP were constructed and induced by IPTG (final concentration 1 mmol/L), followed with the analysis on the expressed protein by fluorescence microscopy, SDS-PAGE and Western blot. Subsequently, the bacterial cells were coated to the LB medium and directly fed to the nematodes followed with capturing the image at 48 h. Results showed when fed to the nematodes for 48 h, the TAT-EGFP fluorescence signals were clearly distributed in the intestinal cells of the worm, while the EGFP fluorescence signals were mainly distributed in the intestinal cavity of the animal. Furthermore, the cellular morphology of TAT-EGFP had no distinct change compared with the EGFP group and controls. Taken together, the data suggested the TAT protein transduction peptide could mediate heterologous protein expression in C.elegans and provided an alternative approach for development of new drug transporter.

Key words: TAT protein transduction peptide    Prokaryotic expression    C.elegans    Transmembrane transduction
收稿日期: 2010-09-21 出版日期: 2011-04-01
ZTFLH:  Q78  
基金资助:

国家自然科学基金(30973107, 30772293)、国家"973"计划(2006CB504100)、国家"重大新药创制"科技重大专项课题(2009ZX09503-002, 2009ZX09301-002, 2009ZX09103-616)资助项目

通讯作者: 张成岗     E-mail: zhangcg@bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴永红
石锦平
何国维
任长虹
高艳
张成岗

引用本文:

吴永红, 石锦平, 何国维, 任长虹, 高艳, 张成岗. TAT蛋白转导肽介导的秀丽线虫体内外源蛋白的跨膜转导研究[J]. 中国生物工程杂志, 2011, 31(03): 39-45.

WU Yong-hong, SHI Jin-ping, HE Guo-wei, REN Chang-hong, GAO Yan, ZHANG Cheng-gang. TAT Protein Transduction Peptide Mediated Heterologous Proteins Transduction in C.elegans. China Biotechnology, 2011, 31(03): 39-45.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I03/39

[1] Greer E L, Maures T J, Hauswirth A G, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C.elegans. Nature,2010,466(7304):383-387.
[2] Rieckher M, Kourtis N, Pasparaki A, et al. Transgenesis in Caenorhabditis elegans. Methods Mol Biol. 2009, 561(1):21-39.
[3] Shyu Y J, Hiatt S M, Duren H M,et al. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc,2008, 3(4):588-596.
[4] Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 1997, 272(25):16010-16017.
[5] Palm-Apergi C, Eguchi A, Dowdy S F. PTD-DRBD siRNA delivery. Methods Mol Biol,2011,683(4):339-347.
[6] 吴永红, 张成岗. HIV-1 TAT蛋白转导肽的研究进展, 中国生物工程杂志, 2010, 30(10):1006-1014. Wu Y, Zhang C.China Biotechnology, 2010, 30(10):1006-1014.
[7] Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55(6):1179-1188.
[8] Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6):1189-1193.
[9] Derossi D, Joliot A H, Chassaing G. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 1994, 269(14):10444-10450.
[10] Han K, Jeon M J, Kim S H. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Mol Cells, 2001, 12(2):267-271.
[11] Jin L H, Bahn J H, Eum W S, et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med, 2001, 31(11):1509-1519.
[12] Park J, Ryu J, Jin L H, et al. 9-polylysine protein transduction domain:enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol Cells, 2002, 13(2):202-208.
[13] Schwarze S R, Dowdy S F. In vivo protein transduction:intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 2000, 21(11):45-48.
[14] Rapoport M, Salman L, Sabag O, et al. Successful TAT-mediated enzyme replacement therapy in a mouse model of mitochondrial E3 deficiency. J Mol Med,2010 Nov 16. .
[15] Muniz L, Egloff S, Ughy B, et al. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. PLoS Pathog,2010, 6(10):e1001152.
[16] 陈菁, 刘树滔, 饶平凡, 等. PTD-Tat之C端融合在活体体内的跨膜递送作用. 福州大学学报, 2006, 34(2):301-304. Chen J, Liu S T, Rao P F, et al. Journal of Fuzhou University, 2006, 34(2):301-304.
[17] Wu Y H, Ren C H , Gao Y et al. A novel method for promoting heterologous protein expression in Escherichia coli by fusion with the HIV-1 TAT core domain. Amino Acids, 2010, 39(3):811-820.
[18] Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A, 1994, 91(2):664-668.
[19] Torchilin V P, Rammohan R, Weissig V, et al. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A, 2001, 98(15):8786-8791.
[20] Lewin M, Carlesso N, Tung C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 2000, 18(4):410-414.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[3] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[4] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[5] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[6] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[7] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[8] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[9] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[10] 何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.
[11] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[12] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[13] 祖力皮也·吐尔逊, 曹春宝, 温浩, 丁剑冰, 德力夏提·依米提. 细粒棘球蚴EgG1Y162基因进化分析、表达及鉴定[J]. 中国生物工程杂志, 2016, 36(4): 78-87.
[14] 扈丽丽, 卓侃, 林柏荣, 廖金铃. 植物寄生线虫效应蛋白功能分析方法的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 101-108.
[15] 周亮, 叶浩, 周瓅, 关文, 李京敬, 郜尽, 韩伟, 俞雁. 人CXCL4蛋白原核表达与纯化[J]. 中国生物工程杂志, 2016, 36(1): 7-13.